spark OrderedRDDFunctions 源码

  • 2022-10-20
  • 浏览 (267)

spark OrderedRDDFunctions 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/OrderedRDDFunctions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import scala.reflect.ClassTag

import org.apache.spark.{InterruptibleIterator, Partitioner, RangePartitioner, TaskContext}
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.internal.Logging
import org.apache.spark.util.collection.ExternalSorter

/**
 * Extra functions available on RDDs of (key, value) pairs where the key is sortable through
 * an implicit conversion. They will work with any key type `K` that has an implicit `Ordering[K]`
 * in scope. Ordering objects already exist for all of the standard primitive types. Users can also
 * define their own orderings for custom types, or to override the default ordering. The implicit
 * ordering that is in the closest scope will be used.
 *
 * {{{
 *   import org.apache.spark.SparkContext._
 *
 *   val rdd: RDD[(String, Int)] = ...
 *   implicit val caseInsensitiveOrdering = new Ordering[String] {
 *     override def compare(a: String, b: String) =
 *       a.toLowerCase(Locale.ROOT).compare(b.toLowerCase(Locale.ROOT))
 *   }
 *
 *   // Sort by key, using the above case insensitive ordering.
 *   rdd.sortByKey()
 * }}}
 */
class OrderedRDDFunctions[K : Ordering : ClassTag,
                          V: ClassTag,
                          P <: Product2[K, V] : ClassTag] @DeveloperApi() (
    self: RDD[P])
  extends Logging with Serializable {
  private val ordering = implicitly[Ordering[K]]

  /**
   * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling
   * `collect` or `save` on the resulting RDD will return or output an ordered list of records
   * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in
   * order of the keys).
   */
  // TODO: this currently doesn't work on P other than Tuple2!
  def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
      : RDD[(K, V)] = self.withScope
  {
    val part = new RangePartitioner(numPartitions, self, ascending)
    new ShuffledRDD[K, V, V](self, part)
      .setKeyOrdering(if (ascending) ordering else ordering.reverse)
  }

  /**
   * Repartition the RDD according to the given partitioner and, within each resulting partition,
   * sort records by their keys.
   *
   * This is more efficient than calling `repartition` and then sorting within each partition
   * because it can push the sorting down into the shuffle machinery.
   */
  def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)] = self.withScope {
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        val sorter = new ExternalSorter[K, V, V](context, None, None, Some(ordering))
        new InterruptibleIterator(context,
          sorter.insertAllAndUpdateMetrics(iter).asInstanceOf[Iterator[(K, V)]])
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, V](self, partitioner).setKeyOrdering(ordering)
    }
  }

  /**
   * Returns an RDD containing only the elements in the inclusive range `lower` to `upper`.
   * If the RDD has been partitioned using a `RangePartitioner`, then this operation can be
   * performed efficiently by only scanning the partitions that might contain matching elements.
   * Otherwise, a standard `filter` is applied to all partitions.
   */
  def filterByRange(lower: K, upper: K): RDD[P] = self.withScope {

    def inRange(k: K): Boolean = ordering.gteq(k, lower) && ordering.lteq(k, upper)

    val rddToFilter: RDD[P] = self.partitioner match {
      case Some(rp: RangePartitioner[K, V]) =>
        val partitionIndices = (rp.getPartition(lower), rp.getPartition(upper)) match {
          case (l, u) => Math.min(l, u) to Math.max(l, u)
        }
        PartitionPruningRDD.create(self, partitionIndices.contains)
      case _ =>
        self
    }
    rddToFilter.filter { case (k, v) => inRange(k) }
  }

}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞