spark AsyncRDDActions 源码

  • 2022-10-20
  • 浏览 (522)

spark AsyncRDDActions 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/AsyncRDDActions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.util.concurrent.atomic.AtomicLong

import scala.collection.mutable.ArrayBuffer
import scala.concurrent.{ExecutionContext, Future}
import scala.reflect.ClassTag

import org.apache.spark.{ComplexFutureAction, FutureAction, JobSubmitter}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.{RDD_LIMIT_INITIAL_NUM_PARTITIONS, RDD_LIMIT_SCALE_UP_FACTOR}
import org.apache.spark.util.ThreadUtils

/**
 * A set of asynchronous RDD actions available through an implicit conversion.
 */
class AsyncRDDActions[T: ClassTag](self: RDD[T]) extends Serializable with Logging {

  /**
   * Returns a future for counting the number of elements in the RDD.
   */
  def countAsync(): FutureAction[Long] = self.withScope {
    val totalCount = new AtomicLong
    self.context.submitJob(
      self,
      (iter: Iterator[T]) => {
        var result = 0L
        while (iter.hasNext) {
          result += 1L
          iter.next()
        }
        result
      },
      Range(0, self.partitions.length),
      (index: Int, data: Long) => totalCount.addAndGet(data),
      totalCount.get())
  }

  /**
   * Returns a future for retrieving all elements of this RDD.
   */
  def collectAsync(): FutureAction[Seq[T]] = self.withScope {
    val results = new Array[Array[T]](self.partitions.length)
    self.context.submitJob[T, Array[T], Seq[T]](self, _.toArray, Range(0, self.partitions.length),
      (index, data) => results(index) = data, results.flatten.toSeq)
  }

  /**
   * Returns a future for retrieving the first num elements of the RDD.
   */
  def takeAsync(num: Int): FutureAction[Seq[T]] = self.withScope {
    val callSite = self.context.getCallSite
    val localProperties = self.context.getLocalProperties
    // Cached thread pool to handle aggregation of subtasks.
    implicit val executionContext = AsyncRDDActions.futureExecutionContext
    val results = new ArrayBuffer[T]
    val totalParts = self.partitions.length

    val scaleUpFactor = Math.max(self.conf.get(RDD_LIMIT_SCALE_UP_FACTOR), 2)

    /*
      Recursively triggers jobs to scan partitions until either the requested
      number of elements are retrieved, or the partitions to scan are exhausted.
      This implementation is non-blocking, asynchronously handling the
      results of each job and triggering the next job using callbacks on futures.
     */
    def continue(partsScanned: Int)(implicit jobSubmitter: JobSubmitter): Future[Seq[T]] =
      if (results.size >= num || partsScanned >= totalParts) {
        Future.successful(results.toSeq)
      } else {
        // The number of partitions to try in this iteration. It is ok for this number to be
        // greater than totalParts because we actually cap it at totalParts in runJob.
        var numPartsToTry = self.conf.get(RDD_LIMIT_INITIAL_NUM_PARTITIONS)
        if (partsScanned > 0) {
          // If we didn't find any rows after the previous iteration, multiply by
          // limitScaleUpFactor and retry. Otherwise, interpolate the number of partitions we need
          // to try, but overestimate it by 50%. We also cap the estimation in the end.
          if (results.isEmpty) {
            numPartsToTry = partsScanned * scaleUpFactor
          } else {
            // the left side of max is >=1 whenever partsScanned >= 2
            numPartsToTry = Math.max(1,
              (1.5 * num * partsScanned / results.size).toInt - partsScanned)
            numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)
          }
        }

        val left = num - results.size
        val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)

        val buf = new Array[Array[T]](p.size)
        self.context.setCallSite(callSite)
        self.context.setLocalProperties(localProperties)
        val job = jobSubmitter.submitJob(self,
          (it: Iterator[T]) => it.take(left).toArray,
          p,
          (index: Int, data: Array[T]) => buf(index) = data,
          ())
        job.flatMap { _ =>
          buf.foreach(results ++= _.take(num - results.size))
          continue(partsScanned + p.size)
        }
      }

    new ComplexFutureAction[Seq[T]](continue(0)(_))
  }

  /**
   * Applies a function f to all elements of this RDD.
   */
  def foreachAsync(f: T => Unit): FutureAction[Unit] = self.withScope {
    val cleanF = self.context.clean(f)
    self.context.submitJob[T, Unit, Unit](self, _.foreach(cleanF), Range(0, self.partitions.length),
      (index, data) => (), ())
  }

  /**
   * Applies a function f to each partition of this RDD.
   */
  def foreachPartitionAsync(f: Iterator[T] => Unit): FutureAction[Unit] = self.withScope {
    self.context.submitJob[T, Unit, Unit](self, f, Range(0, self.partitions.length),
      (index, data) => (), ())
  }
}

private object AsyncRDDActions {
  val futureExecutionContext = ExecutionContext.fromExecutorService(
    ThreadUtils.newDaemonCachedThreadPool("AsyncRDDActions-future", 128))
}

相关信息

spark 源码目录

相关文章

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

spark InputFileBlockHolder 源码

0  赞