spark BinaryFileRDD 源码

  • 2022-10-20
  • 浏览 (312)

spark BinaryFileRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/BinaryFileRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import org.apache.hadoop.conf.{Configurable, Configuration}
import org.apache.hadoop.io.Writable
import org.apache.hadoop.mapreduce._
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.task.JobContextImpl

import org.apache.spark.{Partition, SparkContext}
import org.apache.spark.input.StreamFileInputFormat

private[spark] class BinaryFileRDD[T](
    @transient private val sc: SparkContext,
    inputFormatClass: Class[_ <: StreamFileInputFormat[T]],
    keyClass: Class[String],
    valueClass: Class[T],
    conf: Configuration,
    minPartitions: Int)
  extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) {

  override def getPartitions: Array[Partition] = {
    val conf = getConf
    // setMinPartitions below will call FileInputFormat.listStatus(), which can be quite slow when
    // traversing a large number of directories and files. Parallelize it.
    conf.setIfUnset(FileInputFormat.LIST_STATUS_NUM_THREADS,
      Runtime.getRuntime.availableProcessors().toString)
    val inputFormat = inputFormatClass.getConstructor().newInstance()
    inputFormat match {
      case configurable: Configurable =>
        configurable.setConf(conf)
      case _ =>
    }
    val jobContext = new JobContextImpl(conf, jobId)
    inputFormat.setMinPartitions(sc, jobContext, minPartitions)
    val rawSplits = inputFormat.getSplits(jobContext).toArray
    val result = new Array[Partition](rawSplits.size)
    for (i <- 0 until rawSplits.size) {
      result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable])
    }
    result
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

spark InputFileBlockHolder 源码

0  赞