spark DoubleRDDFunctions 源码

  • 2022-10-20
  • 浏览 (388)

spark DoubleRDDFunctions 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/DoubleRDDFunctions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import org.apache.spark.TaskContext
import org.apache.spark.annotation.Since
import org.apache.spark.errors.SparkCoreErrors
import org.apache.spark.internal.Logging
import org.apache.spark.partial.BoundedDouble
import org.apache.spark.partial.MeanEvaluator
import org.apache.spark.partial.PartialResult
import org.apache.spark.partial.SumEvaluator
import org.apache.spark.util.StatCounter

/**
 * Extra functions available on RDDs of Doubles through an implicit conversion.
 */
class DoubleRDDFunctions(self: RDD[Double]) extends Logging with Serializable {
  /** Add up the elements in this RDD. */
  def sum(): Double = self.withScope {
    self.fold(0.0)(_ + _)
  }

  /**
   * Return a [[org.apache.spark.util.StatCounter]] object that captures the mean, variance and
   * count of the RDD's elements in one operation.
   */
  def stats(): StatCounter = self.withScope {
    self.mapPartitions(nums => Iterator(StatCounter(nums))).reduce((a, b) => a.merge(b))
  }

  /** Compute the mean of this RDD's elements. */
  def mean(): Double = self.withScope {
    stats().mean
  }

  /** Compute the population variance of this RDD's elements. */
  def variance(): Double = self.withScope {
    stats().variance
  }

  /** Compute the population standard deviation of this RDD's elements. */
  def stdev(): Double = self.withScope {
    stats().stdev
  }

  /**
   * Compute the sample standard deviation of this RDD's elements (which corrects for bias in
   * estimating the standard deviation by dividing by N-1 instead of N).
   */
  def sampleStdev(): Double = self.withScope {
    stats().sampleStdev
  }

  /**
   * Compute the sample variance of this RDD's elements (which corrects for bias in
   * estimating the variance by dividing by N-1 instead of N).
   */
  def sampleVariance(): Double = self.withScope {
    stats().sampleVariance
  }

  /**
   * Compute the population standard deviation of this RDD's elements.
   */
  @Since("2.1.0")
  def popStdev(): Double = self.withScope {
    stats().popStdev
  }

  /**
   * Compute the population variance of this RDD's elements.
   */
  @Since("2.1.0")
  def popVariance(): Double = self.withScope {
    stats().popVariance
  }

  /**
   * Approximate operation to return the mean within a timeout.
   */
  def meanApprox(
      timeout: Long,
      confidence: Double = 0.95): PartialResult[BoundedDouble] = self.withScope {
    val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns)
    val evaluator = new MeanEvaluator(self.partitions.length, confidence)
    self.context.runApproximateJob(self, processPartition, evaluator, timeout)
  }

  /**
   * Approximate operation to return the sum within a timeout.
   */
  def sumApprox(
      timeout: Long,
      confidence: Double = 0.95): PartialResult[BoundedDouble] = self.withScope {
    val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns)
    val evaluator = new SumEvaluator(self.partitions.length, confidence)
    self.context.runApproximateJob(self, processPartition, evaluator, timeout)
  }

  /**
   * Compute a histogram of the data using bucketCount number of buckets evenly
   *  spaced between the minimum and maximum of the RDD. For example if the min
   *  value is 0 and the max is 100 and there are two buckets the resulting
   *  buckets will be [0, 50) [50, 100]. bucketCount must be at least 1
   * If the RDD contains infinity, NaN throws an exception
   * If the elements in RDD do not vary (max == min) always returns a single bucket.
   */
  def histogram(bucketCount: Int): (Array[Double], Array[Long]) = self.withScope {
    // Scala's built-in range has issues. See #SI-8782
    def customRange(min: Double, max: Double, steps: Int): IndexedSeq[Double] = {
      val span = max - min
      Range.Int(0, steps, 1).map(s => min + (s * span) / steps) :+ max
    }
    // Compute the minimum and the maximum
    val (max: Double, min: Double) = self.mapPartitions { items =>
      Iterator(
        items.foldRight((Double.NegativeInfinity, Double.PositiveInfinity)
        )((e: Double, x: (Double, Double)) => (x._1.max(e), x._2.min(e))))
    }.reduce { (maxmin1, maxmin2) =>
      (maxmin1._1.max(maxmin2._1), maxmin1._2.min(maxmin2._2))
    }
    if (min.isNaN || max.isNaN || max.isInfinity || min.isInfinity ) {
      throw SparkCoreErrors.histogramOnEmptyRDDOrContainingInfinityOrNaNError()
    }
    val range = if (min != max) {
      // Range.Double.inclusive(min, max, increment)
      // The above code doesn't always work. See Scala bug #SI-8782.
      // https://issues.scala-lang.org/browse/SI-8782
      customRange(min, max, bucketCount)
    } else {
      List(min, min)
    }
    val buckets = range.toArray
    (buckets, histogram(buckets, true))
  }

  /**
   * Compute a histogram using the provided buckets. The buckets are all open
   * to the right except for the last which is closed.
   *  e.g. for the array
   *  [1, 10, 20, 50] the buckets are [1, 10) [10, 20) [20, 50]
   *  e.g {@code <=x<10, 10<=x<20, 20<=x<=50}
   *  And on the input of 1 and 50 we would have a histogram of 1, 0, 1
   *
   * @note If your histogram is evenly spaced (e.g. [0, 10, 20, 30]) this can be switched
   * from an O(log n) insertion to O(1) per element. (where n = # buckets) if you set evenBuckets
   * to true.
   * buckets must be sorted and not contain any duplicates.
   * buckets array must be at least two elements
   * All NaN entries are treated the same. If you have a NaN bucket it must be
   * the maximum value of the last position and all NaN entries will be counted
   * in that bucket.
   */
  def histogram(
      buckets: Array[Double],
      evenBuckets: Boolean = false): Array[Long] = self.withScope {
    if (buckets.length < 2) {
      throw new IllegalArgumentException("buckets array must have at least two elements")
    }
    // The histogramPartition function computes the partial histogram for a given
    // partition. The provided bucketFunction determines which bucket in the array
    // to increment or returns None if there is no bucket. This is done so we can
    // specialize for uniformly distributed buckets and save the O(log n) binary
    // search cost.
    def histogramPartition(bucketFunction: (Double) => Option[Int])(iter: Iterator[Double]):
        Iterator[Array[Long]] = {
      val counters = new Array[Long](buckets.length - 1)
      while (iter.hasNext) {
        bucketFunction(iter.next()) match {
          case Some(x: Int) => counters(x) += 1
          case _ => // No-Op
        }
      }
      Iterator(counters)
    }
    // Merge the counters.
    def mergeCounters(a1: Array[Long], a2: Array[Long]): Array[Long] = {
      a1.indices.foreach(i => a1(i) += a2(i))
      a1
    }
    // Basic bucket function. This works using Java's built in Array
    // binary search. Takes log(size(buckets))
    def basicBucketFunction(e: Double): Option[Int] = {
      val location = java.util.Arrays.binarySearch(buckets, e)
      if (location < 0) {
        // If the location is less than 0 then the insertion point in the array
        // to keep it sorted is -location-1
        val insertionPoint = -location-1
        // If we have to insert before the first element or after the last one
        // its out of bounds.
        // We do this rather than buckets.lengthCompare(insertionPoint)
        // because Array[Double] fails to override it (for now).
        if (insertionPoint > 0 && insertionPoint < buckets.length) {
          Some(insertionPoint-1)
        } else {
          None
        }
      } else if (location < buckets.length - 1) {
        // Exact match, just insert here
        Some(location)
      } else {
        // Exact match to the last element
        Some(location - 1)
      }
    }
    // Determine the bucket function in constant time. Requires that buckets are evenly spaced
    def fastBucketFunction(min: Double, max: Double, count: Int)(e: Double): Option[Int] = {
      // If our input is not a number unless the increment is also NaN then we fail fast
      if (e.isNaN || e < min || e > max) {
        None
      } else {
        // Compute ratio of e's distance along range to total range first, for better precision
        val bucketNumber = (((e - min) / (max - min)) * count).toInt
        // should be less than count, but will equal count if e == max, in which case
        // it's part of the last end-range-inclusive bucket, so return count-1
        Some(math.min(bucketNumber, count - 1))
      }
    }
    // Decide which bucket function to pass to histogramPartition. We decide here
    // rather than having a general function so that the decision need only be made
    // once rather than once per shard
    val bucketFunction = if (evenBuckets) {
      fastBucketFunction(buckets.head, buckets.last, buckets.length - 1) _
    } else {
      basicBucketFunction _
    }
    if (self.partitions.length == 0) {
      new Array[Long](buckets.length - 1)
    } else {
      // reduce() requires a non-empty RDD. This works because the mapPartitions will make
      // non-empty partitions out of empty ones. But it doesn't handle the no-partitions case,
      // which is below
      self.mapPartitions(histogramPartition(bucketFunction)).reduce(mergeCounters)
    }
  }

}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

spark InputFileBlockHolder 源码

0  赞