spark CartesianRDD 源码

  • 2022-10-20
  • 浏览 (362)

spark CartesianRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/CartesianRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.io.{IOException, ObjectOutputStream}

import scala.reflect.ClassTag

import org.apache.spark._
import org.apache.spark.util.Utils

private[spark]
class CartesianPartition(
    idx: Int,
    @transient private val rdd1: RDD[_],
    @transient private val rdd2: RDD[_],
    s1Index: Int,
    s2Index: Int
  ) extends Partition {
  var s1 = rdd1.partitions(s1Index)
  var s2 = rdd2.partitions(s2Index)
  override val index: Int = idx

  @throws(classOf[IOException])
  private def writeObject(oos: ObjectOutputStream): Unit = Utils.tryOrIOException {
    // Update the reference to parent split at the time of task serialization
    s1 = rdd1.partitions(s1Index)
    s2 = rdd2.partitions(s2Index)
    oos.defaultWriteObject()
  }
}

private[spark]
class CartesianRDD[T: ClassTag, U: ClassTag](
    sc: SparkContext,
    var rdd1 : RDD[T],
    var rdd2 : RDD[U])
  extends RDD[(T, U)](sc, Nil)
  with Serializable {

  val numPartitionsInRdd2 = rdd2.partitions.length

  override def getPartitions: Array[Partition] = {
    // create the cross product split
    val array = new Array[Partition](rdd1.partitions.length * rdd2.partitions.length)
    for (s1 <- rdd1.partitions; s2 <- rdd2.partitions) {
      val idx = s1.index * numPartitionsInRdd2 + s2.index
      array(idx) = new CartesianPartition(idx, rdd1, rdd2, s1.index, s2.index)
    }
    array
  }

  override def getPreferredLocations(split: Partition): Seq[String] = {
    val currSplit = split.asInstanceOf[CartesianPartition]
    (rdd1.preferredLocations(currSplit.s1) ++ rdd2.preferredLocations(currSplit.s2)).distinct
  }

  override def compute(split: Partition, context: TaskContext): Iterator[(T, U)] = {
    val currSplit = split.asInstanceOf[CartesianPartition]
    for (x <- rdd1.iterator(currSplit.s1, context);
         y <- rdd2.iterator(currSplit.s2, context)) yield (x, y)
  }

  override def getDependencies: Seq[Dependency[_]] = List(
    new NarrowDependency(rdd1) {
      def getParents(id: Int): Seq[Int] = List(id / numPartitionsInRdd2)
    },
    new NarrowDependency(rdd2) {
      def getParents(id: Int): Seq[Int] = List(id % numPartitionsInRdd2)
    }
  )

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    rdd1 = null
    rdd2 = null
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

spark InputFileBlockHolder 源码

0  赞