spark RDD 源码

  • 2022-10-20
  • 浏览 (297)

spark RDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/RDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.util.Random

import scala.collection.{mutable, Map}
import scala.collection.mutable.ArrayBuffer
import scala.io.Codec
import scala.language.implicitConversions
import scala.ref.WeakReference
import scala.reflect.{classTag, ClassTag}

import com.clearspring.analytics.stream.cardinality.HyperLogLogPlus
import org.apache.hadoop.io.{BytesWritable, NullWritable, Text}
import org.apache.hadoop.io.compress.CompressionCodec
import org.apache.hadoop.mapred.TextOutputFormat

import org.apache.spark._
import org.apache.spark.Partitioner._
import org.apache.spark.annotation.{DeveloperApi, Experimental, Since}
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.errors.SparkCoreErrors
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.internal.config.RDD_LIMIT_SCALE_UP_FACTOR
import org.apache.spark.partial.BoundedDouble
import org.apache.spark.partial.CountEvaluator
import org.apache.spark.partial.GroupedCountEvaluator
import org.apache.spark.partial.PartialResult
import org.apache.spark.resource.ResourceProfile
import org.apache.spark.storage.{RDDBlockId, StorageLevel}
import org.apache.spark.util.Utils
import org.apache.spark.util.collection.{ExternalAppendOnlyMap, OpenHashMap,
  Utils => collectionUtils}
import org.apache.spark.util.random.{BernoulliCellSampler, BernoulliSampler, PoissonSampler,
  SamplingUtils, XORShiftRandom}

/**
 * A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,
 * partitioned collection of elements that can be operated on in parallel. This class contains the
 * basic operations available on all RDDs, such as `map`, `filter`, and `persist`. In addition,
 * [[org.apache.spark.rdd.PairRDDFunctions]] contains operations available only on RDDs of key-value
 * pairs, such as `groupByKey` and `join`;
 * [[org.apache.spark.rdd.DoubleRDDFunctions]] contains operations available only on RDDs of
 * Doubles; and
 * [[org.apache.spark.rdd.SequenceFileRDDFunctions]] contains operations available on RDDs that
 * can be saved as SequenceFiles.
 * All operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)])
 * through implicit.
 *
 * Internally, each RDD is characterized by five main properties:
 *
 *  - A list of partitions
 *  - A function for computing each split
 *  - A list of dependencies on other RDDs
 *  - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
 *  - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
 *    an HDFS file)
 *
 * All of the scheduling and execution in Spark is done based on these methods, allowing each RDD
 * to implement its own way of computing itself. Indeed, users can implement custom RDDs (e.g. for
 * reading data from a new storage system) by overriding these functions. Please refer to the
 * <a href="http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf">Spark paper</a>
 * for more details on RDD internals.
 */
abstract class RDD[T: ClassTag](
    @transient private var _sc: SparkContext,
    @transient private var deps: Seq[Dependency[_]]
  ) extends Serializable with Logging {

  if (classOf[RDD[_]].isAssignableFrom(elementClassTag.runtimeClass)) {
    // This is a warning instead of an exception in order to avoid breaking user programs that
    // might have defined nested RDDs without running jobs with them.
    logWarning("Spark does not support nested RDDs (see SPARK-5063)")
  }

  private def sc: SparkContext = {
    if (_sc == null) {
      throw SparkCoreErrors.rddLacksSparkContextError()
    }
    _sc
  }

  /** Construct an RDD with just a one-to-one dependency on one parent */
  def this(@transient oneParent: RDD[_]) =
    this(oneParent.context, List(new OneToOneDependency(oneParent)))

  private[spark] def conf = sc.conf
  // =======================================================================
  // Methods that should be implemented by subclasses of RDD
  // =======================================================================

  /**
   * :: DeveloperApi ::
   * Implemented by subclasses to compute a given partition.
   */
  @DeveloperApi
  def compute(split: Partition, context: TaskContext): Iterator[T]

  /**
   * Implemented by subclasses to return the set of partitions in this RDD. This method will only
   * be called once, so it is safe to implement a time-consuming computation in it.
   *
   * The partitions in this array must satisfy the following property:
   *   `rdd.partitions.zipWithIndex.forall { case (partition, index) => partition.index == index }`
   */
  protected def getPartitions: Array[Partition]

  /**
   * Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only
   * be called once, so it is safe to implement a time-consuming computation in it.
   */
  protected def getDependencies: Seq[Dependency[_]] = deps

  /**
   * Optionally overridden by subclasses to specify placement preferences.
   */
  protected def getPreferredLocations(split: Partition): Seq[String] = Nil

  /** Optionally overridden by subclasses to specify how they are partitioned. */
  @transient val partitioner: Option[Partitioner] = None

  // =======================================================================
  // Methods and fields available on all RDDs
  // =======================================================================

  /** The SparkContext that created this RDD. */
  def sparkContext: SparkContext = sc

  /** A unique ID for this RDD (within its SparkContext). */
  val id: Int = sc.newRddId()

  /** A friendly name for this RDD */
  @transient var name: String = _

  /** Assign a name to this RDD */
  def setName(_name: String): this.type = {
    name = _name
    this
  }

  /**
   * Mark this RDD for persisting using the specified level.
   *
   * @param newLevel the target storage level
   * @param allowOverride whether to override any existing level with the new one
   */
  private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type = {
    // TODO: Handle changes of StorageLevel
    if (storageLevel != StorageLevel.NONE && newLevel != storageLevel && !allowOverride) {
      throw SparkCoreErrors.cannotChangeStorageLevelError()
    }
    // If this is the first time this RDD is marked for persisting, register it
    // with the SparkContext for cleanups and accounting. Do this only once.
    if (storageLevel == StorageLevel.NONE) {
      sc.cleaner.foreach(_.registerRDDForCleanup(this))
      sc.persistRDD(this)
    }
    storageLevel = newLevel
    this
  }

  /**
   * Set this RDD's storage level to persist its values across operations after the first time
   * it is computed. This can only be used to assign a new storage level if the RDD does not
   * have a storage level set yet. Local checkpointing is an exception.
   */
  def persist(newLevel: StorageLevel): this.type = {
    if (isLocallyCheckpointed) {
      // This means the user previously called localCheckpoint(), which should have already
      // marked this RDD for persisting. Here we should override the old storage level with
      // one that is explicitly requested by the user (after adapting it to use disk).
      persist(LocalRDDCheckpointData.transformStorageLevel(newLevel), allowOverride = true)
    } else {
      persist(newLevel, allowOverride = false)
    }
  }

  /**
   * Persist this RDD with the default storage level (`MEMORY_ONLY`).
   */
  def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

  /**
   * Persist this RDD with the default storage level (`MEMORY_ONLY`).
   */
  def cache(): this.type = persist()

  /**
   * Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
   *
   * @param blocking Whether to block until all blocks are deleted (default: false)
   * @return This RDD.
   */
  def unpersist(blocking: Boolean = false): this.type = {
    logInfo(s"Removing RDD $id from persistence list")
    sc.unpersistRDD(id, blocking)
    storageLevel = StorageLevel.NONE
    this
  }

  /** Get the RDD's current storage level, or StorageLevel.NONE if none is set. */
  def getStorageLevel: StorageLevel = storageLevel

  /**
   * Lock for all mutable state of this RDD (persistence, partitions, dependencies, etc.).  We do
   * not use `this` because RDDs are user-visible, so users might have added their own locking on
   * RDDs; sharing that could lead to a deadlock.
   *
   * One thread might hold the lock on many of these, for a chain of RDD dependencies; but
   * because DAGs are acyclic, and we only ever hold locks for one path in that DAG, there is no
   * chance of deadlock.
   *
   * Executors may reference the shared fields (though they should never mutate them,
   * that only happens on the driver).
   */
  private val stateLock = new Serializable {}

  // Our dependencies and partitions will be gotten by calling subclass's methods below, and will
  // be overwritten when we're checkpointed
  @volatile private var dependencies_ : Seq[Dependency[_]] = _
  // When we overwrite the dependencies we keep a weak reference to the old dependencies
  // for user controlled cleanup.
  @volatile @transient private var legacyDependencies: WeakReference[Seq[Dependency[_]]] = _
  @volatile @transient private var partitions_ : Array[Partition] = _

  /** An Option holding our checkpoint RDD, if we are checkpointed */
  private def checkpointRDD: Option[CheckpointRDD[T]] = checkpointData.flatMap(_.checkpointRDD)

  /**
   * Get the list of dependencies of this RDD, taking into account whether the
   * RDD is checkpointed or not.
   */
  final def dependencies: Seq[Dependency[_]] = {
    checkpointRDD.map(r => List(new OneToOneDependency(r))).getOrElse {
      if (dependencies_ == null) {
        stateLock.synchronized {
          if (dependencies_ == null) {
            dependencies_ = getDependencies
          }
        }
      }
      dependencies_
    }
  }

  /**
   * Get the list of dependencies of this RDD ignoring checkpointing.
   */
  final private def internalDependencies: Option[Seq[Dependency[_]]] = {
    if (legacyDependencies != null) {
      legacyDependencies.get
    } else if (dependencies_ != null) {
      Some(dependencies_)
    } else {
      // This case should be infrequent.
      stateLock.synchronized {
        if (dependencies_ == null) {
          dependencies_ = getDependencies
        }
        Some(dependencies_)
      }
    }
  }

  /**
   * Get the array of partitions of this RDD, taking into account whether the
   * RDD is checkpointed or not.
   */
  final def partitions: Array[Partition] = {
    checkpointRDD.map(_.partitions).getOrElse {
      if (partitions_ == null) {
        stateLock.synchronized {
          if (partitions_ == null) {
            partitions_ = getPartitions
            partitions_.zipWithIndex.foreach { case (partition, index) =>
              require(partition.index == index,
                s"partitions($index).partition == ${partition.index}, but it should equal $index")
            }
          }
        }
      }
      partitions_
    }
  }

  /**
   * Returns the number of partitions of this RDD.
   */
  @Since("1.6.0")
  final def getNumPartitions: Int = partitions.length

  /**
   * Get the preferred locations of a partition, taking into account whether the
   * RDD is checkpointed.
   */
  final def preferredLocations(split: Partition): Seq[String] = {
    checkpointRDD.map(_.getPreferredLocations(split)).getOrElse {
      getPreferredLocations(split)
    }
  }

  /**
   * Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
   * This should ''not'' be called by users directly, but is available for implementers of custom
   * subclasses of RDD.
   */
  final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
    if (storageLevel != StorageLevel.NONE) {
      getOrCompute(split, context)
    } else {
      computeOrReadCheckpoint(split, context)
    }
  }

  /**
   * Return the ancestors of the given RDD that are related to it only through a sequence of
   * narrow dependencies. This traverses the given RDD's dependency tree using DFS, but maintains
   * no ordering on the RDDs returned.
   */
  private[spark] def getNarrowAncestors: Seq[RDD[_]] = {
    val ancestors = new mutable.HashSet[RDD[_]]

    def visit(rdd: RDD[_]): Unit = {
      val narrowDependencies = rdd.dependencies.filter(_.isInstanceOf[NarrowDependency[_]])
      val narrowParents = narrowDependencies.map(_.rdd)
      val narrowParentsNotVisited = narrowParents.filterNot(ancestors.contains)
      narrowParentsNotVisited.foreach { parent =>
        ancestors.add(parent)
        visit(parent)
      }
    }

    visit(this)

    // In case there is a cycle, do not include the root itself
    ancestors.filterNot(_ == this).toSeq
  }

  /**
   * Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.
   */
  private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
  {
    if (isCheckpointedAndMaterialized) {
      firstParent[T].iterator(split, context)
    } else {
      compute(split, context)
    }
  }

  /**
   * Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached.
   */
  private[spark] def getOrCompute(partition: Partition, context: TaskContext): Iterator[T] = {
    val blockId = RDDBlockId(id, partition.index)
    var readCachedBlock = true
    // This method is called on executors, so we need call SparkEnv.get instead of sc.env.
    SparkEnv.get.blockManager.getOrElseUpdate(blockId, storageLevel, elementClassTag, () => {
      readCachedBlock = false
      computeOrReadCheckpoint(partition, context)
    }) match {
      // Block hit.
      case Left(blockResult) =>
        if (readCachedBlock) {
          val existingMetrics = context.taskMetrics().inputMetrics
          existingMetrics.incBytesRead(blockResult.bytes)
          new InterruptibleIterator[T](context, blockResult.data.asInstanceOf[Iterator[T]]) {
            override def next(): T = {
              existingMetrics.incRecordsRead(1)
              delegate.next()
            }
          }
        } else {
          new InterruptibleIterator(context, blockResult.data.asInstanceOf[Iterator[T]])
        }
      // Need to compute the block.
      case Right(iter) =>
        new InterruptibleIterator(context, iter)
    }
  }

  /**
   * Execute a block of code in a scope such that all new RDDs created in this body will
   * be part of the same scope. For more detail, see {{org.apache.spark.rdd.RDDOperationScope}}.
   *
   * Note: Return statements are NOT allowed in the given body.
   */
  private[spark] def withScope[U](body: => U): U = RDDOperationScope.withScope[U](sc)(body)

  // Transformations (return a new RDD)

  /**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (_, _, iter) => iter.map(cleanF))
  }

  /**
   *  Return a new RDD by first applying a function to all elements of this
   *  RDD, and then flattening the results.
   */
  def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (_, _, iter) => iter.flatMap(cleanF))
  }

  /**
   * Return a new RDD containing only the elements that satisfy a predicate.
   */
  def filter(f: T => Boolean): RDD[T] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[T, T](
      this,
      (_, _, iter) => iter.filter(cleanF),
      preservesPartitioning = true)
  }

  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    def removeDuplicatesInPartition(partition: Iterator[T]): Iterator[T] = {
      // Create an instance of external append only map which ignores values.
      val map = new ExternalAppendOnlyMap[T, Null, Null](
        createCombiner = _ => null,
        mergeValue = (a, b) => a,
        mergeCombiners = (a, b) => a)
      map.insertAll(partition.map(_ -> null))
      map.iterator.map(_._1)
    }
    partitioner match {
      case Some(_) if numPartitions == partitions.length =>
        mapPartitions(removeDuplicatesInPartition, preservesPartitioning = true)
      case _ => map(x => (x, null)).reduceByKey((x, _) => x, numPartitions).map(_._1)
    }
  }

  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(): RDD[T] = withScope {
    distinct(partitions.length)
  }

  /**
   * Return a new RDD that has exactly numPartitions partitions.
   *
   * Can increase or decrease the level of parallelism in this RDD. Internally, this uses
   * a shuffle to redistribute data.
   *
   * If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
   * which can avoid performing a shuffle.
   */
  def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
  }

  /**
   * Return a new RDD that is reduced into `numPartitions` partitions.
   *
   * This results in a narrow dependency, e.g. if you go from 1000 partitions
   * to 100 partitions, there will not be a shuffle, instead each of the 100
   * new partitions will claim 10 of the current partitions. If a larger number
   * of partitions is requested, it will stay at the current number of partitions.
   *
   * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
   * this may result in your computation taking place on fewer nodes than
   * you like (e.g. one node in the case of numPartitions = 1). To avoid this,
   * you can pass shuffle = true. This will add a shuffle step, but means the
   * current upstream partitions will be executed in parallel (per whatever
   * the current partitioning is).
   *
   * @note With shuffle = true, you can actually coalesce to a larger number
   * of partitions. This is useful if you have a small number of partitions,
   * say 100, potentially with a few partitions being abnormally large. Calling
   * coalesce(1000, shuffle = true) will result in 1000 partitions with the
   * data distributed using a hash partitioner. The optional partition coalescer
   * passed in must be serializable.
   */
  def coalesce(numPartitions: Int, shuffle: Boolean = false,
               partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
              (implicit ord: Ordering[T] = null)
      : RDD[T] = withScope {
    require(numPartitions > 0, s"Number of partitions ($numPartitions) must be positive.")
    if (shuffle) {
      /** Distributes elements evenly across output partitions, starting from a random partition. */
      val distributePartition = (index: Int, items: Iterator[T]) => {
        var position = new XORShiftRandom(index).nextInt(numPartitions)
        items.map { t =>
          // Note that the hash code of the key will just be the key itself. The HashPartitioner
          // will mod it with the number of total partitions.
          position = position + 1
          (position, t)
        }
      } : Iterator[(Int, T)]

      // include a shuffle step so that our upstream tasks are still distributed
      new CoalescedRDD(
        new ShuffledRDD[Int, T, T](
          mapPartitionsWithIndexInternal(distributePartition, isOrderSensitive = true),
          new HashPartitioner(numPartitions)),
        numPartitions,
        partitionCoalescer).values
    } else {
      new CoalescedRDD(this, numPartitions, partitionCoalescer)
    }
  }

  /**
   * Return a sampled subset of this RDD.
   *
   * @param withReplacement can elements be sampled multiple times (replaced when sampled out)
   * @param fraction expected size of the sample as a fraction of this RDD's size
   *  without replacement: probability that each element is chosen; fraction must be [0, 1]
   *  with replacement: expected number of times each element is chosen; fraction must be greater
   *  than or equal to 0
   * @param seed seed for the random number generator
   *
   * @note This is NOT guaranteed to provide exactly the fraction of the count
   * of the given [[RDD]].
   */
  def sample(
      withReplacement: Boolean,
      fraction: Double,
      seed: Long = Utils.random.nextLong): RDD[T] = {
    require(fraction >= 0,
      s"Fraction must be nonnegative, but got ${fraction}")

    withScope {
      if (withReplacement) {
        new PartitionwiseSampledRDD[T, T](this, new PoissonSampler[T](fraction), true, seed)
      } else {
        new PartitionwiseSampledRDD[T, T](this, new BernoulliSampler[T](fraction), true, seed)
      }
    }
  }

  /**
   * Randomly splits this RDD with the provided weights.
   *
   * @param weights weights for splits, will be normalized if they don't sum to 1
   * @param seed random seed
   *
   * @return split RDDs in an array
   */
  def randomSplit(
      weights: Array[Double],
      seed: Long = Utils.random.nextLong): Array[RDD[T]] = {
    require(weights.forall(_ >= 0),
      s"Weights must be nonnegative, but got ${weights.mkString("[", ",", "]")}")
    require(weights.sum > 0,
      s"Sum of weights must be positive, but got ${weights.mkString("[", ",", "]")}")

    withScope {
      val sum = weights.sum
      val normalizedCumWeights = weights.map(_ / sum).scanLeft(0.0d)(_ + _)
      normalizedCumWeights.sliding(2).map { x =>
        randomSampleWithRange(x(0), x(1), seed)
      }.toArray
    }
  }


  /**
   * Internal method exposed for Random Splits in DataFrames. Samples an RDD given a probability
   * range.
   * @param lb lower bound to use for the Bernoulli sampler
   * @param ub upper bound to use for the Bernoulli sampler
   * @param seed the seed for the Random number generator
   * @return A random sub-sample of the RDD without replacement.
   */
  private[spark] def randomSampleWithRange(lb: Double, ub: Double, seed: Long): RDD[T] = {
    this.mapPartitionsWithIndex( { (index, partition) =>
      val sampler = new BernoulliCellSampler[T](lb, ub)
      sampler.setSeed(seed + index)
      sampler.sample(partition)
    }, isOrderSensitive = true, preservesPartitioning = true)
  }

  /**
   * Return a fixed-size sampled subset of this RDD in an array
   *
   * @param withReplacement whether sampling is done with replacement
   * @param num size of the returned sample
   * @param seed seed for the random number generator
   * @return sample of specified size in an array
   *
   * @note this method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   */
  def takeSample(
      withReplacement: Boolean,
      num: Int,
      seed: Long = Utils.random.nextLong): Array[T] = withScope {
    val numStDev = 10.0

    require(num >= 0, "Negative number of elements requested")
    require(num <= (Int.MaxValue - (numStDev * math.sqrt(Int.MaxValue)).toInt),
      "Cannot support a sample size > Int.MaxValue - " +
      s"$numStDev * math.sqrt(Int.MaxValue)")

    if (num == 0) {
      new Array[T](0)
    } else {
      val initialCount = this.count()
      if (initialCount == 0) {
        new Array[T](0)
      } else {
        val rand = new Random(seed)
        if (!withReplacement && num >= initialCount) {
          Utils.randomizeInPlace(this.collect(), rand)
        } else {
          val fraction = SamplingUtils.computeFractionForSampleSize(num, initialCount,
            withReplacement)
          var samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()

          // If the first sample didn't turn out large enough, keep trying to take samples;
          // this shouldn't happen often because we use a big multiplier for the initial size
          var numIters = 0
          while (samples.length < num) {
            logWarning(s"Needed to re-sample due to insufficient sample size. Repeat #$numIters")
            samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()
            numIters += 1
          }
          Utils.randomizeInPlace(samples, rand).take(num)
        }
      }
    }
  }

  /**
   * Return the union of this RDD and another one. Any identical elements will appear multiple
   * times (use `.distinct()` to eliminate them).
   */
  def union(other: RDD[T]): RDD[T] = withScope {
    sc.union(this, other)
  }

  /**
   * Return the union of this RDD and another one. Any identical elements will appear multiple
   * times (use `.distinct()` to eliminate them).
   */
  def ++(other: RDD[T]): RDD[T] = withScope {
    this.union(other)
  }

  /**
   * Return this RDD sorted by the given key function.
   */
  def sortBy[K](
      f: (T) => K,
      ascending: Boolean = true,
      numPartitions: Int = this.partitions.length)
      (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T] = withScope {
    this.keyBy[K](f)
        .sortByKey(ascending, numPartitions)
        .values
  }

  /**
   * Return the intersection of this RDD and another one. The output will not contain any duplicate
   * elements, even if the input RDDs did.
   *
   * @note This method performs a shuffle internally.
   */
  def intersection(other: RDD[T]): RDD[T] = withScope {
    this.map(v => (v, null)).cogroup(other.map(v => (v, null)))
        .filter { case (_, (leftGroup, rightGroup)) => leftGroup.nonEmpty && rightGroup.nonEmpty }
        .keys
  }

  /**
   * Return the intersection of this RDD and another one. The output will not contain any duplicate
   * elements, even if the input RDDs did.
   *
   * @note This method performs a shuffle internally.
   *
   * @param partitioner Partitioner to use for the resulting RDD
   */
  def intersection(
      other: RDD[T],
      partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    this.map(v => (v, null)).cogroup(other.map(v => (v, null)), partitioner)
        .filter { case (_, (leftGroup, rightGroup)) => leftGroup.nonEmpty && rightGroup.nonEmpty }
        .keys
  }

  /**
   * Return the intersection of this RDD and another one. The output will not contain any duplicate
   * elements, even if the input RDDs did.  Performs a hash partition across the cluster
   *
   * @note This method performs a shuffle internally.
   *
   * @param numPartitions How many partitions to use in the resulting RDD
   */
  def intersection(other: RDD[T], numPartitions: Int): RDD[T] = withScope {
    intersection(other, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD created by coalescing all elements within each partition into an array.
   */
  def glom(): RDD[Array[T]] = withScope {
    new MapPartitionsRDD[Array[T], T](this, (_, _, iter) => Iterator(iter.toArray))
  }

  /**
   * Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of
   * elements (a, b) where a is in `this` and b is in `other`.
   */
  def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope {
    new CartesianRDD(sc, this, other)
  }

  /**
   * Return an RDD of grouped items. Each group consists of a key and a sequence of elements
   * mapping to that key. The ordering of elements within each group is not guaranteed, and
   * may even differ each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   */
  def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope {
    groupBy[K](f, defaultPartitioner(this))
  }

  /**
   * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
   * mapping to that key. The ordering of elements within each group is not guaranteed, and
   * may even differ each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   */
  def groupBy[K](
      f: T => K,
      numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope {
    groupBy(f, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD of grouped items. Each group consists of a key and a sequence of elements
   * mapping to that key. The ordering of elements within each group is not guaranteed, and
   * may even differ each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   */
  def groupBy[K](f: T => K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null)
      : RDD[(K, Iterable[T])] = withScope {
    val cleanF = sc.clean(f)
    this.map(t => (cleanF(t), t)).groupByKey(p)
  }

  /**
   * Return an RDD created by piping elements to a forked external process.
   */
  def pipe(command: String): RDD[String] = withScope {
    // Similar to Runtime.exec(), if we are given a single string, split it into words
    // using a standard StringTokenizer (i.e. by spaces)
    pipe(PipedRDD.tokenize(command))
  }

  /**
   * Return an RDD created by piping elements to a forked external process.
   */
  def pipe(command: String, env: Map[String, String]): RDD[String] = withScope {
    // Similar to Runtime.exec(), if we are given a single string, split it into words
    // using a standard StringTokenizer (i.e. by spaces)
    pipe(PipedRDD.tokenize(command), env)
  }

  /**
   * Return an RDD created by piping elements to a forked external process. The resulting RDD
   * is computed by executing the given process once per partition. All elements
   * of each input partition are written to a process's stdin as lines of input separated
   * by a newline. The resulting partition consists of the process's stdout output, with
   * each line of stdout resulting in one element of the output partition. A process is invoked
   * even for empty partitions.
   *
   * The print behavior can be customized by providing two functions.
   *
   * @param command command to run in forked process.
   * @param env environment variables to set.
   * @param printPipeContext Before piping elements, this function is called as an opportunity
   *                         to pipe context data. Print line function (like out.println) will be
   *                         passed as printPipeContext's parameter.
   * @param printRDDElement Use this function to customize how to pipe elements. This function
   *                        will be called with each RDD element as the 1st parameter, and the
   *                        print line function (like out.println()) as the 2nd parameter.
   *                        An example of pipe the RDD data of groupBy() in a streaming way,
   *                        instead of constructing a huge String to concat all the elements:
   *                        {{{
   *                        def printRDDElement(record:(String, Seq[String]), f:String=>Unit) =
   *                          for (e <- record._2) {f(e)}
   *                        }}}
   * @param separateWorkingDir Use separate working directories for each task.
   * @param bufferSize Buffer size for the stdin writer for the piped process.
   * @param encoding Char encoding used for interacting (via stdin, stdout and stderr) with
   *                 the piped process
   * @return the result RDD
   */
  def pipe(
      command: Seq[String],
      env: Map[String, String] = Map(),
      printPipeContext: (String => Unit) => Unit = null,
      printRDDElement: (T, String => Unit) => Unit = null,
      separateWorkingDir: Boolean = false,
      bufferSize: Int = 8192,
      encoding: String = Codec.defaultCharsetCodec.name): RDD[String] = withScope {
    new PipedRDD(this, command, env,
      if (printPipeContext ne null) sc.clean(printPipeContext) else null,
      if (printRDDElement ne null) sc.clean(printRDDElement) else null,
      separateWorkingDir,
      bufferSize,
      encoding)
  }

  /**
   * Return a new RDD by applying a function to each partition of this RDD.
   *
   * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
   * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
   */
  def mapPartitions[U: ClassTag](
      f: Iterator[T] => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    val cleanedF = sc.clean(f)
    new MapPartitionsRDD(
      this,
      (_: TaskContext, _: Int, iter: Iterator[T]) => cleanedF(iter),
      preservesPartitioning)
  }

  /**
   * [performance] Spark's internal mapPartitionsWithIndex method that skips closure cleaning.
   * It is a performance API to be used carefully only if we are sure that the RDD elements are
   * serializable and don't require closure cleaning.
   *
   * @param preservesPartitioning indicates whether the input function preserves the partitioner,
   *                              which should be `false` unless this is a pair RDD and the input
   *                              function doesn't modify the keys.
   * @param isOrderSensitive whether or not the function is order-sensitive. If it's order
   *                         sensitive, it may return totally different result when the input order
   *                         is changed. Mostly stateful functions are order-sensitive.
   */
  private[spark] def mapPartitionsWithIndexInternal[U: ClassTag](
      f: (Int, Iterator[T]) => Iterator[U],
      preservesPartitioning: Boolean = false,
      isOrderSensitive: Boolean = false): RDD[U] = withScope {
    new MapPartitionsRDD(
      this,
      (_: TaskContext, index: Int, iter: Iterator[T]) => f(index, iter),
      preservesPartitioning = preservesPartitioning,
      isOrderSensitive = isOrderSensitive)
  }

  /**
   * [performance] Spark's internal mapPartitions method that skips closure cleaning.
   */
  private[spark] def mapPartitionsInternal[U: ClassTag](
      f: Iterator[T] => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    new MapPartitionsRDD(
      this,
      (_: TaskContext, _: Int, iter: Iterator[T]) => f(iter),
      preservesPartitioning)
  }

  /**
   * Return a new RDD by applying a function to each partition of this RDD, while tracking the index
   * of the original partition.
   *
   * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
   * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
   */
  def mapPartitionsWithIndex[U: ClassTag](
      f: (Int, Iterator[T]) => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    val cleanedF = sc.clean(f)
    new MapPartitionsRDD(
      this,
      (_: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter),
      preservesPartitioning)
  }

  /**
   * Return a new RDD by applying a function to each partition of this RDD, while tracking the index
   * of the original partition.
   *
   * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
   * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
   *
   * `isOrderSensitive` indicates whether the function is order-sensitive. If it is order
   * sensitive, it may return totally different result when the input order
   * is changed. Mostly stateful functions are order-sensitive.
   */
  private[spark] def mapPartitionsWithIndex[U: ClassTag](
      f: (Int, Iterator[T]) => Iterator[U],
      preservesPartitioning: Boolean,
      isOrderSensitive: Boolean): RDD[U] = withScope {
    val cleanedF = sc.clean(f)
    new MapPartitionsRDD(
      this,
      (_: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter),
      preservesPartitioning,
      isOrderSensitive = isOrderSensitive)
  }

  /**
   * Zips this RDD with another one, returning key-value pairs with the first element in each RDD,
   * second element in each RDD, etc. Assumes that the two RDDs have the *same number of
   * partitions* and the *same number of elements in each partition* (e.g. one was made through
   * a map on the other).
   */
  def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope {
    zipPartitions(other, preservesPartitioning = false) { (thisIter, otherIter) =>
      new Iterator[(T, U)] {
        def hasNext: Boolean = (thisIter.hasNext, otherIter.hasNext) match {
          case (true, true) => true
          case (false, false) => false
          case _ => throw SparkCoreErrors.canOnlyZipRDDsWithSamePartitionSizeError()
        }
        def next(): (T, U) = (thisIter.next(), otherIter.next())
      }
    }
  }

  /**
   * Zip this RDD's partitions with one (or more) RDD(s) and return a new RDD by
   * applying a function to the zipped partitions. Assumes that all the RDDs have the
   * *same number of partitions*, but does *not* require them to have the same number
   * of elements in each partition.
   */
  def zipPartitions[B: ClassTag, V: ClassTag]
      (rdd2: RDD[B], preservesPartitioning: Boolean)
      (f: (Iterator[T], Iterator[B]) => Iterator[V]): RDD[V] = withScope {
    new ZippedPartitionsRDD2(sc, sc.clean(f), this, rdd2, preservesPartitioning)
  }

  def zipPartitions[B: ClassTag, V: ClassTag]
      (rdd2: RDD[B])
      (f: (Iterator[T], Iterator[B]) => Iterator[V]): RDD[V] = withScope {
    zipPartitions(rdd2, preservesPartitioning = false)(f)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean)
      (f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V]): RDD[V] = withScope {
    new ZippedPartitionsRDD3(sc, sc.clean(f), this, rdd2, rdd3, preservesPartitioning)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C])
      (f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V]): RDD[V] = withScope {
    zipPartitions(rdd2, rdd3, preservesPartitioning = false)(f)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean)
      (f: (Iterator[T], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V]): RDD[V] = withScope {
    new ZippedPartitionsRDD4(sc, sc.clean(f), this, rdd2, rdd3, rdd4, preservesPartitioning)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D])
      (f: (Iterator[T], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V]): RDD[V] = withScope {
    zipPartitions(rdd2, rdd3, rdd4, preservesPartitioning = false)(f)
  }


  // Actions (launch a job to return a value to the user program)

  /**
   * Applies a function f to all elements of this RDD.
   */
  def foreach(f: T => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
  }

  /**
   * Applies a function f to each partition of this RDD.
   */
  def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
  }

  /**
   * Return an array that contains all of the elements in this RDD.
   *
   * @note This method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   */
  def collect(): Array[T] = withScope {
    val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
    Array.concat(results: _*)
  }

  /**
   * Return an iterator that contains all of the elements in this RDD.
   *
   * The iterator will consume as much memory as the largest partition in this RDD.
   *
   * @note This results in multiple Spark jobs, and if the input RDD is the result
   * of a wide transformation (e.g. join with different partitioners), to avoid
   * recomputing the input RDD should be cached first.
   */
  def toLocalIterator: Iterator[T] = withScope {
    def collectPartition(p: Int): Array[T] = {
      sc.runJob(this, (iter: Iterator[T]) => iter.toArray, Seq(p)).head
    }
    partitions.indices.iterator.flatMap(i => collectPartition(i))
  }

  /**
   * Return an RDD that contains all matching values by applying `f`.
   */
  def collect[U: ClassTag](f: PartialFunction[T, U]): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    filter(cleanF.isDefinedAt).map(cleanF)
  }

  /**
   * Return an RDD with the elements from `this` that are not in `other`.
   *
   * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
   * RDD will be &lt;= us.
   */
  def subtract(other: RDD[T]): RDD[T] = withScope {
    subtract(other, partitioner.getOrElse(new HashPartitioner(partitions.length)))
  }

  /**
   * Return an RDD with the elements from `this` that are not in `other`.
   */
  def subtract(other: RDD[T], numPartitions: Int): RDD[T] = withScope {
    subtract(other, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD with the elements from `this` that are not in `other`.
   */
  def subtract(
      other: RDD[T],
      p: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    if (partitioner == Some(p)) {
      // Our partitioner knows how to handle T (which, since we have a partitioner, is
      // really (K, V)) so make a new Partitioner that will de-tuple our fake tuples
      val p2 = new Partitioner() {
        override def numPartitions: Int = p.numPartitions
        override def getPartition(k: Any): Int = p.getPartition(k.asInstanceOf[(Any, _)]._1)
      }
      // Unfortunately, since we're making a new p2, we'll get ShuffleDependencies
      // anyway, and when calling .keys, will not have a partitioner set, even though
      // the SubtractedRDD will, thanks to p2's de-tupled partitioning, already be
      // partitioned by the right/real keys (e.g. p).
      this.map(x => (x, null)).subtractByKey(other.map((_, null)), p2).keys
    } else {
      this.map(x => (x, null)).subtractByKey(other.map((_, null)), p).keys
    }
  }

  /**
   * Reduces the elements of this RDD using the specified commutative and
   * associative binary operator.
   */
  def reduce(f: (T, T) => T): T = withScope {
    val cleanF = sc.clean(f)
    val reducePartition: Iterator[T] => Option[T] = iter => {
      if (iter.hasNext) {
        Some(iter.reduceLeft(cleanF))
      } else {
        None
      }
    }
    var jobResult: Option[T] = None
    val mergeResult = (_: Int, taskResult: Option[T]) => {
      if (taskResult.isDefined) {
        jobResult = jobResult match {
          case Some(value) => Some(f(value, taskResult.get))
          case None => taskResult
        }
      }
    }
    sc.runJob(this, reducePartition, mergeResult)
    // Get the final result out of our Option, or throw an exception if the RDD was empty
    jobResult.getOrElse(throw SparkCoreErrors.emptyCollectionError())
  }

  /**
   * Reduces the elements of this RDD in a multi-level tree pattern.
   *
   * @param depth suggested depth of the tree (default: 2)
   * @see [[org.apache.spark.rdd.RDD#reduce]]
   */
  def treeReduce(f: (T, T) => T, depth: Int = 2): T = withScope {
    require(depth >= 1, s"Depth must be greater than or equal to 1 but got $depth.")
    val cleanF = context.clean(f)
    val reducePartition: Iterator[T] => Option[T] = iter => {
      if (iter.hasNext) {
        Some(iter.reduceLeft(cleanF))
      } else {
        None
      }
    }
    val partiallyReduced = mapPartitions(it => Iterator(reducePartition(it)))
    val op: (Option[T], Option[T]) => Option[T] = (c, x) => {
      if (c.isDefined && x.isDefined) {
        Some(cleanF(c.get, x.get))
      } else if (c.isDefined) {
        c
      } else if (x.isDefined) {
        x
      } else {
        None
      }
    }
    partiallyReduced.treeAggregate(Option.empty[T])(op, op, depth)
      .getOrElse(throw SparkCoreErrors.emptyCollectionError())
  }

  /**
   * Aggregate the elements of each partition, and then the results for all the partitions, using a
   * given associative function and a neutral "zero value". The function
   * op(t1, t2) is allowed to modify t1 and return it as its result value to avoid object
   * allocation; however, it should not modify t2.
   *
   * This behaves somewhat differently from fold operations implemented for non-distributed
   * collections in functional languages like Scala. This fold operation may be applied to
   * partitions individually, and then fold those results into the final result, rather than
   * apply the fold to each element sequentially in some defined ordering. For functions
   * that are not commutative, the result may differ from that of a fold applied to a
   * non-distributed collection.
   *
   * @param zeroValue the initial value for the accumulated result of each partition for the `op`
   *                  operator, and also the initial value for the combine results from different
   *                  partitions for the `op` operator - this will typically be the neutral
   *                  element (e.g. `Nil` for list concatenation or `0` for summation)
   * @param op an operator used to both accumulate results within a partition and combine results
   *                  from different partitions
   */
  def fold(zeroValue: T)(op: (T, T) => T): T = withScope {
    // Clone the zero value since we will also be serializing it as part of tasks
    var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())
    val cleanOp = sc.clean(op)
    val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)
    val mergeResult = (_: Int, taskResult: T) => jobResult = op(jobResult, taskResult)
    sc.runJob(this, foldPartition, mergeResult)
    jobResult
  }

  /**
   * Aggregate the elements of each partition, and then the results for all the partitions, using
   * given combine functions and a neutral "zero value". This function can return a different result
   * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U
   * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are
   * allowed to modify and return their first argument instead of creating a new U to avoid memory
   * allocation.
   *
   * @param zeroValue the initial value for the accumulated result of each partition for the
   *                  `seqOp` operator, and also the initial value for the combine results from
   *                  different partitions for the `combOp` operator - this will typically be the
   *                  neutral element (e.g. `Nil` for list concatenation or `0` for summation)
   * @param seqOp an operator used to accumulate results within a partition
   * @param combOp an associative operator used to combine results from different partitions
   */
  def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
    // Clone the zero value since we will also be serializing it as part of tasks
    var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
    val cleanSeqOp = sc.clean(seqOp)
    val cleanCombOp = sc.clean(combOp)
    val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
    val mergeResult = (_: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
    sc.runJob(this, aggregatePartition, mergeResult)
    jobResult
  }

  /**
   * Aggregates the elements of this RDD in a multi-level tree pattern.
   * This method is semantically identical to [[org.apache.spark.rdd.RDD#aggregate]].
   *
   * @param depth suggested depth of the tree (default: 2)
   */
  def treeAggregate[U: ClassTag](zeroValue: U)(
      seqOp: (U, T) => U,
      combOp: (U, U) => U,
      depth: Int = 2): U = withScope {
      treeAggregate(zeroValue, seqOp, combOp, depth, finalAggregateOnExecutor = false)
  }

  /**
   * [[org.apache.spark.rdd.RDD#treeAggregate]] with a parameter to do the final
   * aggregation on the executor
   *
   * @param finalAggregateOnExecutor do final aggregation on executor
   */
  def treeAggregate[U: ClassTag](
      zeroValue: U,
      seqOp: (U, T) => U,
      combOp: (U, U) => U,
      depth: Int,
      finalAggregateOnExecutor: Boolean): U = withScope {
      require(depth >= 1, s"Depth must be greater than or equal to 1 but got $depth.")
    if (partitions.length == 0) {
      Utils.clone(zeroValue, context.env.closureSerializer.newInstance())
    } else {
      val cleanSeqOp = context.clean(seqOp)
      val cleanCombOp = context.clean(combOp)
      val aggregatePartition =
        (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
      var partiallyAggregated: RDD[U] = mapPartitions(it => Iterator(aggregatePartition(it)))
      var numPartitions = partiallyAggregated.partitions.length
      val scale = math.max(math.ceil(math.pow(numPartitions, 1.0 / depth)).toInt, 2)
      // If creating an extra level doesn't help reduce
      // the wall-clock time, we stop tree aggregation.

      // Don't trigger TreeAggregation when it doesn't save wall-clock time
      while (numPartitions > scale + math.ceil(numPartitions.toDouble / scale)) {
        numPartitions /= scale
        val curNumPartitions = numPartitions
        partiallyAggregated = partiallyAggregated.mapPartitionsWithIndex {
          (i, iter) => iter.map((i % curNumPartitions, _))
        }.foldByKey(zeroValue, new HashPartitioner(curNumPartitions))(cleanCombOp).values
      }
      if (finalAggregateOnExecutor && partiallyAggregated.partitions.length > 1) {
        // map the partially aggregated rdd into a key-value rdd
        // do the computation in the single executor with one partition
        // get the new RDD[U]
        partiallyAggregated = partiallyAggregated
          .map(v => (0.toByte, v))
          .foldByKey(zeroValue, new ConstantPartitioner)(cleanCombOp)
          .values
      }
      val copiedZeroValue = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())
      partiallyAggregated.fold(copiedZeroValue)(cleanCombOp)
    }
  }

  /**
   * Return the number of elements in the RDD.
   */
  def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

  /**
   * Approximate version of count() that returns a potentially incomplete result
   * within a timeout, even if not all tasks have finished.
   *
   * The confidence is the probability that the error bounds of the result will
   * contain the true value. That is, if countApprox were called repeatedly
   * with confidence 0.9, we would expect 90% of the results to contain the
   * true count. The confidence must be in the range [0,1] or an exception will
   * be thrown.
   *
   * @param timeout maximum time to wait for the job, in milliseconds
   * @param confidence the desired statistical confidence in the result
   * @return a potentially incomplete result, with error bounds
   */
  def countApprox(
      timeout: Long,
      confidence: Double = 0.95): PartialResult[BoundedDouble] = withScope {
    require(0.0 <= confidence && confidence <= 1.0, s"confidence ($confidence) must be in [0,1]")
    val countElements: (TaskContext, Iterator[T]) => Long = { (_, iter) =>
      var result = 0L
      while (iter.hasNext) {
        result += 1L
        iter.next()
      }
      result
    }
    val evaluator = new CountEvaluator(partitions.length, confidence)
    sc.runApproximateJob(this, countElements, evaluator, timeout)
  }

  /**
   * Return the count of each unique value in this RDD as a local map of (value, count) pairs.
   *
   * @note This method should only be used if the resulting map is expected to be small, as
   * the whole thing is loaded into the driver's memory.
   * To handle very large results, consider using
   *
   * {{{
   * rdd.map(x => (x, 1L)).reduceByKey(_ + _)
   * }}}
   *
   * , which returns an RDD[T, Long] instead of a map.
   */
  def countByValue()(implicit ord: Ordering[T] = null): Map[T, Long] = withScope {
    map(value => (value, null)).countByKey()
  }

  /**
   * Approximate version of countByValue().
   *
   * @param timeout maximum time to wait for the job, in milliseconds
   * @param confidence the desired statistical confidence in the result
   * @return a potentially incomplete result, with error bounds
   */
  def countByValueApprox(timeout: Long, confidence: Double = 0.95)
      (implicit ord: Ordering[T] = null)
      : PartialResult[Map[T, BoundedDouble]] = withScope {
    require(0.0 <= confidence && confidence <= 1.0, s"confidence ($confidence) must be in [0,1]")
    if (elementClassTag.runtimeClass.isArray) {
      throw SparkCoreErrors.countByValueApproxNotSupportArraysError()
    }
    val countPartition: (TaskContext, Iterator[T]) => OpenHashMap[T, Long] = { (_, iter) =>
      val map = new OpenHashMap[T, Long]
      iter.foreach {
        t => map.changeValue(t, 1L, _ + 1L)
      }
      map
    }
    val evaluator = new GroupedCountEvaluator[T](partitions.length, confidence)
    sc.runApproximateJob(this, countPartition, evaluator, timeout)
  }

  /**
   * Return approximate number of distinct elements in the RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="https://doi.org/10.1145/2452376.2452456">here</a>.
   *
   * The relative accuracy is approximately `1.054 / sqrt(2^p)`. Setting a nonzero (`sp` is greater
   * than `p`) would trigger sparse representation of registers, which may reduce the memory
   * consumption and increase accuracy when the cardinality is small.
   *
   * @param p The precision value for the normal set.
   *          `p` must be a value between 4 and `sp` if `sp` is not zero (32 max).
   * @param sp The precision value for the sparse set, between 0 and 32.
   *           If `sp` equals 0, the sparse representation is skipped.
   */
  def countApproxDistinct(p: Int, sp: Int): Long = withScope {
    require(p >= 4, s"p ($p) must be >= 4")
    require(sp <= 32, s"sp ($sp) must be <= 32")
    require(sp == 0 || p <= sp, s"p ($p) cannot be greater than sp ($sp)")
    val zeroCounter = new HyperLogLogPlus(p, sp)
    aggregate(zeroCounter)(
      (hll: HyperLogLogPlus, v: T) => {
        hll.offer(v)
        hll
      },
      (h1: HyperLogLogPlus, h2: HyperLogLogPlus) => {
        h1.addAll(h2)
        h1
      }).cardinality()
  }

  /**
   * Return approximate number of distinct elements in the RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="https://doi.org/10.1145/2452376.2452456">here</a>.
   *
   * @param relativeSD Relative accuracy. Smaller values create counters that require more space.
   *                   It must be greater than 0.000017.
   */
  def countApproxDistinct(relativeSD: Double = 0.05): Long = withScope {
    require(relativeSD > 0.000017, s"accuracy ($relativeSD) must be greater than 0.000017")
    val p = math.ceil(2.0 * math.log(1.054 / relativeSD) / math.log(2)).toInt
    countApproxDistinct(if (p < 4) 4 else p, 0)
  }

  /**
   * Zips this RDD with its element indices. The ordering is first based on the partition index
   * and then the ordering of items within each partition. So the first item in the first
   * partition gets index 0, and the last item in the last partition receives the largest index.
   *
   * This is similar to Scala's zipWithIndex but it uses Long instead of Int as the index type.
   * This method needs to trigger a spark job when this RDD contains more than one partitions.
   *
   * @note Some RDDs, such as those returned by groupBy(), do not guarantee order of
   * elements in a partition. The index assigned to each element is therefore not guaranteed,
   * and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee
   * the same index assignments, you should sort the RDD with sortByKey() or save it to a file.
   */
  def zipWithIndex(): RDD[(T, Long)] = withScope {
    new ZippedWithIndexRDD(this)
  }

  /**
   * Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k,
   * 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method
   * won't trigger a spark job, which is different from [[org.apache.spark.rdd.RDD#zipWithIndex]].
   *
   * @note Some RDDs, such as those returned by groupBy(), do not guarantee order of
   * elements in a partition. The unique ID assigned to each element is therefore not guaranteed,
   * and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee
   * the same index assignments, you should sort the RDD with sortByKey() or save it to a file.
   */
  def zipWithUniqueId(): RDD[(T, Long)] = withScope {
    val n = this.partitions.length.toLong
    this.mapPartitionsWithIndex { case (k, iter) =>
      Utils.getIteratorZipWithIndex(iter, 0L).map { case (item, i) =>
        (item, i * n + k)
      }
    }
  }

  /**
   * Take the first num elements of the RDD. It works by first scanning one partition, and use the
   * results from that partition to estimate the number of additional partitions needed to satisfy
   * the limit.
   *
   * @note This method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @note Due to complications in the internal implementation, this method will raise
   * an exception if called on an RDD of `Nothing` or `Null`.
   */
  def take(num: Int): Array[T] = withScope {
    val scaleUpFactor = Math.max(conf.get(RDD_LIMIT_SCALE_UP_FACTOR), 2)
    if (num == 0) {
      new Array[T](0)
    } else {
      val buf = new ArrayBuffer[T]
      val totalParts = this.partitions.length
      var partsScanned = 0
      while (buf.size < num && partsScanned < totalParts) {
        // The number of partitions to try in this iteration. It is ok for this number to be
        // greater than totalParts because we actually cap it at totalParts in runJob.
        var numPartsToTry = conf.get(RDD_LIMIT_INITIAL_NUM_PARTITIONS)
        val left = num - buf.size
        if (partsScanned > 0) {
          // If we didn't find any rows after the previous iteration, multiply by
          // limitScaleUpFactor and retry. Otherwise, interpolate the number of partitions we need
          // to try, but overestimate it by 50%. We also cap the estimation in the end.
          if (buf.isEmpty) {
            numPartsToTry = partsScanned * scaleUpFactor
          } else {
            // As left > 0, numPartsToTry is always >= 1
            numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
            numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)
          }
        }

        val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
        val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)

        res.foreach(buf ++= _.take(num - buf.size))
        partsScanned += p.size
      }

      buf.toArray
    }
  }

  /**
   * Return the first element in this RDD.
   */
  def first(): T = withScope {
    take(1) match {
      case Array(t) => t
      case _ => throw SparkCoreErrors.emptyCollectionError()
    }
  }

  /**
   * Returns the top k (largest) elements from this RDD as defined by the specified
   * implicit Ordering[T] and maintains the ordering. This does the opposite of
   * [[takeOrdered]]. For example:
   * {{{
   *   sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)
   *   // returns Array(12)
   *
   *   sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)
   *   // returns Array(6, 5)
   * }}}
   *
   * @note This method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @param num k, the number of top elements to return
   * @param ord the implicit ordering for T
   * @return an array of top elements
   */
  def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
    takeOrdered(num)(ord.reverse)
  }

  /**
   * Returns the first k (smallest) elements from this RDD as defined by the specified
   * implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
   * For example:
   * {{{
   *   sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
   *   // returns Array(2)
   *
   *   sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
   *   // returns Array(2, 3)
   * }}}
   *
   * @note This method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @param num k, the number of elements to return
   * @param ord the implicit ordering for T
   * @return an array of top elements
   */
  def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
    if (num == 0 || this.getNumPartitions == 0) {
      Array.empty
    } else {
      this.mapPartitionsWithIndex { case (pid, iter) =>
        if (iter.nonEmpty) {
          // Priority keeps the largest elements, so let's reverse the ordering.
          Iterator.single(collectionUtils.takeOrdered(iter, num)(ord).toArray)
        } else if (pid == 0) {
          // make sure partition 0 always returns an array to avoid reduce on empty RDD
          Iterator.single(Array.empty[T])
        } else {
          Iterator.empty
        }
      }.reduce { (array1, array2) =>
        val size = math.min(num, array1.length + array2.length)
        val array = Array.ofDim[T](size)
        collectionUtils.mergeOrdered[T](Seq(array1, array2))(ord).copyToArray(array, 0, size)
        array
      }
    }
  }

  /**
   * Returns the max of this RDD as defined by the implicit Ordering[T].
   * @return the maximum element of the RDD
   * */
  def max()(implicit ord: Ordering[T]): T = withScope {
    this.reduce(ord.max)
  }

  /**
   * Returns the min of this RDD as defined by the implicit Ordering[T].
   * @return the minimum element of the RDD
   * */
  def min()(implicit ord: Ordering[T]): T = withScope {
    this.reduce(ord.min)
  }

  /**
   * @note Due to complications in the internal implementation, this method will raise an
   * exception if called on an RDD of `Nothing` or `Null`. This may be come up in practice
   * because, for example, the type of `parallelize(Seq())` is `RDD[Nothing]`.
   * (`parallelize(Seq())` should be avoided anyway in favor of `parallelize(Seq[T]())`.)
   * @return true if and only if the RDD contains no elements at all. Note that an RDD
   *         may be empty even when it has at least 1 partition.
   */
  def isEmpty(): Boolean = withScope {
    partitions.length == 0 || take(1).length == 0
  }

  /**
   * Save this RDD as a text file, using string representations of elements.
   */
  def saveAsTextFile(path: String): Unit = withScope {
    saveAsTextFile(path, null)
  }

  /**
   * Save this RDD as a compressed text file, using string representations of elements.
   */
  def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]): Unit = withScope {
    this.mapPartitions { iter =>
      val text = new Text()
      iter.map { x =>
        require(x != null, "text files do not allow null rows")
        text.set(x.toString)
        (NullWritable.get(), text)
      }
    }.saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path, codec)
  }

  /**
   * Save this RDD as a SequenceFile of serialized objects.
   */
  def saveAsObjectFile(path: String): Unit = withScope {
    this.mapPartitions(iter => iter.grouped(10).map(_.toArray))
      .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))
      .saveAsSequenceFile(path)
  }

  /**
   * Creates tuples of the elements in this RDD by applying `f`.
   */
  def keyBy[K](f: T => K): RDD[(K, T)] = withScope {
    val cleanedF = sc.clean(f)
    map(x => (cleanedF(x), x))
  }

  /** A private method for tests, to look at the contents of each partition */
  private[spark] def collectPartitions(): Array[Array[T]] = withScope {
    sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
  }

  /**
   * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
   * directory set with `SparkContext#setCheckpointDir` and all references to its parent
   * RDDs will be removed. This function must be called before any job has been
   * executed on this RDD. It is strongly recommended that this RDD is persisted in
   * memory, otherwise saving it on a file will require recomputation.
   */
  def checkpoint(): Unit = RDDCheckpointData.synchronized {
    // NOTE: we use a global lock here due to complexities downstream with ensuring
    // children RDD partitions point to the correct parent partitions. In the future
    // we should revisit this consideration.
    if (context.checkpointDir.isEmpty) {
      throw SparkCoreErrors.checkpointDirectoryHasNotBeenSetInSparkContextError()
    } else if (checkpointData.isEmpty) {
      checkpointData = Some(new ReliableRDDCheckpointData(this))
    }
  }

  /**
   * Mark this RDD for local checkpointing using Spark's existing caching layer.
   *
   * This method is for users who wish to truncate RDD lineages while skipping the expensive
   * step of replicating the materialized data in a reliable distributed file system. This is
   * useful for RDDs with long lineages that need to be truncated periodically (e.g. GraphX).
   *
   * Local checkpointing sacrifices fault-tolerance for performance. In particular, checkpointed
   * data is written to ephemeral local storage in the executors instead of to a reliable,
   * fault-tolerant storage. The effect is that if an executor fails during the computation,
   * the checkpointed data may no longer be accessible, causing an irrecoverable job failure.
   *
   * This is NOT safe to use with dynamic allocation, which removes executors along
   * with their cached blocks. If you must use both features, you are advised to set
   * `spark.dynamicAllocation.cachedExecutorIdleTimeout` to a high value.
   *
   * The checkpoint directory set through `SparkContext#setCheckpointDir` is not used.
   */
  def localCheckpoint(): this.type = RDDCheckpointData.synchronized {
    if (conf.get(DYN_ALLOCATION_ENABLED) &&
        conf.contains(DYN_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT)) {
      logWarning("Local checkpointing is NOT safe to use with dynamic allocation, " +
        "which removes executors along with their cached blocks. If you must use both " +
        "features, you are advised to set `spark.dynamicAllocation.cachedExecutorIdleTimeout` " +
        "to a high value. E.g. If you plan to use the RDD for 1 hour, set the timeout to " +
        "at least 1 hour.")
    }

    // Note: At this point we do not actually know whether the user will call persist() on
    // this RDD later, so we must explicitly call it here ourselves to ensure the cached
    // blocks are registered for cleanup later in the SparkContext.
    //
    // If, however, the user has already called persist() on this RDD, then we must adapt
    // the storage level he/she specified to one that is appropriate for local checkpointing
    // (i.e. uses disk) to guarantee correctness.

    if (storageLevel == StorageLevel.NONE) {
      persist(LocalRDDCheckpointData.DEFAULT_STORAGE_LEVEL)
    } else {
      persist(LocalRDDCheckpointData.transformStorageLevel(storageLevel), allowOverride = true)
    }

    // If this RDD is already checkpointed and materialized, its lineage is already truncated.
    // We must not override our `checkpointData` in this case because it is needed to recover
    // the checkpointed data. If it is overridden, next time materializing on this RDD will
    // cause error.
    if (isCheckpointedAndMaterialized) {
      logWarning("Not marking RDD for local checkpoint because it was already " +
        "checkpointed and materialized")
    } else {
      // Lineage is not truncated yet, so just override any existing checkpoint data with ours
      checkpointData match {
        case Some(_: ReliableRDDCheckpointData[_]) => logWarning(
          "RDD was already marked for reliable checkpointing: overriding with local checkpoint.")
        case _ =>
      }
      checkpointData = Some(new LocalRDDCheckpointData(this))
    }
    this
  }

  /**
   * Return whether this RDD is checkpointed and materialized, either reliably or locally.
   */
  def isCheckpointed: Boolean = isCheckpointedAndMaterialized

  /**
   * Return whether this RDD is checkpointed and materialized, either reliably or locally.
   * This is introduced as an alias for `isCheckpointed` to clarify the semantics of the
   * return value. Exposed for testing.
   */
  private[spark] def isCheckpointedAndMaterialized: Boolean =
    checkpointData.exists(_.isCheckpointed)

  /**
   * Return whether this RDD is marked for local checkpointing.
   * Exposed for testing.
   */
  private[rdd] def isLocallyCheckpointed: Boolean = {
    checkpointData match {
      case Some(_: LocalRDDCheckpointData[T]) => true
      case _ => false
    }
  }

  /**
   * Return whether this RDD is reliably checkpointed and materialized.
   */
  private[rdd] def isReliablyCheckpointed: Boolean = {
    checkpointData match {
      case Some(reliable: ReliableRDDCheckpointData[_]) if reliable.isCheckpointed => true
      case _ => false
    }
  }

  /**
   * Gets the name of the directory to which this RDD was checkpointed.
   * This is not defined if the RDD is checkpointed locally.
   */
  def getCheckpointFile: Option[String] = {
    checkpointData match {
      case Some(reliable: ReliableRDDCheckpointData[T]) => reliable.getCheckpointDir
      case _ => None
    }
  }

  /**
   * Removes an RDD's shuffles and it's non-persisted ancestors.
   * When running without a shuffle service, cleaning up shuffle files enables downscaling.
   * If you use the RDD after this call, you should checkpoint and materialize it first.
   * If you are uncertain of what you are doing, please do not use this feature.
   * Additional techniques for mitigating orphaned shuffle files:
   *   * Tuning the driver GC to be more aggressive, so the regular context cleaner is triggered
   *   * Setting an appropriate TTL for shuffle files to be auto cleaned
   */
  @DeveloperApi
  @Since("3.1.0")
  def cleanShuffleDependencies(blocking: Boolean = false): Unit = {
    sc.cleaner.foreach { cleaner =>
      /**
       * Clean the shuffles & all of its parents.
       */
      def cleanEagerly(dep: Dependency[_]): Unit = {
        dep match {
          case dependency: ShuffleDependency[_, _, _] =>
            val shuffleId = dependency.shuffleId
            cleaner.doCleanupShuffle(shuffleId, blocking)
          case _ => // do nothing
        }
        val rdd = dep.rdd
        val rddDepsOpt = rdd.internalDependencies
        if (rdd.getStorageLevel == StorageLevel.NONE) {
          rddDepsOpt.foreach(deps => deps.foreach(cleanEagerly))
        }
      }
      internalDependencies.foreach(deps => deps.foreach(cleanEagerly))
    }
  }


  /**
   * :: Experimental ::
   * Marks the current stage as a barrier stage, where Spark must launch all tasks together.
   * In case of a task failure, instead of only restarting the failed task, Spark will abort the
   * entire stage and re-launch all tasks for this stage.
   * The barrier execution mode feature is experimental and it only handles limited scenarios.
   * Please read the linked SPIP and design docs to understand the limitations and future plans.
   * @return an [[RDDBarrier]] instance that provides actions within a barrier stage
   * @see [[org.apache.spark.BarrierTaskContext]]
   * @see <a href="https://jira.apache.org/jira/browse/SPARK-24374">SPIP: Barrier Execution Mode</a>
   * @see <a href="https://jira.apache.org/jira/browse/SPARK-24582">Design Doc</a>
   */
  @Experimental
  @Since("2.4.0")
  def barrier(): RDDBarrier[T] = withScope(new RDDBarrier[T](this))

  /**
   * Specify a ResourceProfile to use when calculating this RDD. This is only supported on
   * certain cluster managers and currently requires dynamic allocation to be enabled.
   * It will result in new executors with the resources specified being acquired to
   * calculate the RDD.
   */
  @Experimental
  @Since("3.1.0")
  def withResources(rp: ResourceProfile): this.type = {
    resourceProfile = Option(rp)
    sc.resourceProfileManager.addResourceProfile(resourceProfile.get)
    this
  }

  /**
   * Get the ResourceProfile specified with this RDD or null if it wasn't specified.
   * @return the user specified ResourceProfile or null (for Java compatibility) if
   *         none was specified
   */
  @Experimental
  @Since("3.1.0")
  def getResourceProfile(): ResourceProfile = resourceProfile.orNull

  // =======================================================================
  // Other internal methods and fields
  // =======================================================================

  private var storageLevel: StorageLevel = StorageLevel.NONE
  @transient private var resourceProfile: Option[ResourceProfile] = None

  /** User code that created this RDD (e.g. `textFile`, `parallelize`). */
  @transient private[spark] val creationSite = sc.getCallSite()

  /**
   * The scope associated with the operation that created this RDD.
   *
   * This is more flexible than the call site and can be defined hierarchically. For more
   * detail, see the documentation of {{RDDOperationScope}}. This scope is not defined if the
   * user instantiates this RDD himself without using any Spark operations.
   */
  @transient private[spark] val scope: Option[RDDOperationScope] = {
    Option(sc.getLocalProperty(SparkContext.RDD_SCOPE_KEY)).map(RDDOperationScope.fromJson)
  }

  private[spark] def getCreationSite: String = Option(creationSite).map(_.shortForm).getOrElse("")

  private[spark] def elementClassTag: ClassTag[T] = classTag[T]

  private[spark] var checkpointData: Option[RDDCheckpointData[T]] = None

  // Whether to checkpoint all ancestor RDDs that are marked for checkpointing. By default,
  // we stop as soon as we find the first such RDD, an optimization that allows us to write
  // less data but is not safe for all workloads. E.g. in streaming we may checkpoint both
  // an RDD and its parent in every batch, in which case the parent may never be checkpointed
  // and its lineage never truncated, leading to OOMs in the long run (SPARK-6847).
  private val checkpointAllMarkedAncestors =
    Option(sc.getLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS)).exists(_.toBoolean)

  /** Returns the first parent RDD */
  protected[spark] def firstParent[U: ClassTag]: RDD[U] = {
    dependencies.head.rdd.asInstanceOf[RDD[U]]
  }

  /** Returns the jth parent RDD: e.g. rdd.parent[T](0) is equivalent to rdd.firstParent[T] */
  protected[spark] def parent[U: ClassTag](j: Int): RDD[U] = {
    dependencies(j).rdd.asInstanceOf[RDD[U]]
  }

  /** The [[org.apache.spark.SparkContext]] that this RDD was created on. */
  def context: SparkContext = sc

  /**
   * Private API for changing an RDD's ClassTag.
   * Used for internal Java-Scala API compatibility.
   */
  private[spark] def retag(cls: Class[T]): RDD[T] = {
    val classTag: ClassTag[T] = ClassTag.apply(cls)
    this.retag(classTag)
  }

  /**
   * Private API for changing an RDD's ClassTag.
   * Used for internal Java-Scala API compatibility.
   */
  private[spark] def retag(implicit classTag: ClassTag[T]): RDD[T] = {
    this.mapPartitions(identity, preservesPartitioning = true)(classTag)
  }

  // Avoid handling doCheckpoint multiple times to prevent excessive recursion
  @transient private var doCheckpointCalled = false

  /**
   * Performs the checkpointing of this RDD by saving this. It is called after a job using this RDD
   * has completed (therefore the RDD has been materialized and potentially stored in memory).
   * doCheckpoint() is called recursively on the parent RDDs.
   */
  private[spark] def doCheckpoint(): Unit = {
    RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) {
      if (!doCheckpointCalled) {
        doCheckpointCalled = true
        if (checkpointData.isDefined) {
          if (checkpointAllMarkedAncestors) {
            // TODO We can collect all the RDDs that needs to be checkpointed, and then checkpoint
            // them in parallel.
            // Checkpoint parents first because our lineage will be truncated after we
            // checkpoint ourselves
            dependencies.foreach(_.rdd.doCheckpoint())
          }
          checkpointData.get.checkpoint()
        } else {
          dependencies.foreach(_.rdd.doCheckpoint())
        }
      }
    }
  }

  /**
   * Changes the dependencies of this RDD from its original parents to a new RDD (`newRDD`)
   * created from the checkpoint file, and forget its old dependencies and partitions.
   */
  private[spark] def markCheckpointed(): Unit = stateLock.synchronized {
    legacyDependencies = new WeakReference(dependencies_)
    clearDependencies()
    partitions_ = null
    deps = null    // Forget the constructor argument for dependencies too
  }

  /**
   * Clears the dependencies of this RDD. This method must ensure that all references
   * to the original parent RDDs are removed to enable the parent RDDs to be garbage
   * collected. Subclasses of RDD may override this method for implementing their own cleaning
   * logic. See [[org.apache.spark.rdd.UnionRDD]] for an example.
   */
  protected def clearDependencies(): Unit = stateLock.synchronized {
    dependencies_ = null
  }

  /** A description of this RDD and its recursive dependencies for debugging. */
  def toDebugString: String = {
    // Get a debug description of an rdd without its children
    def debugSelf(rdd: RDD[_]): Seq[String] = {
      import Utils.bytesToString

      val persistence = if (storageLevel != StorageLevel.NONE) storageLevel.description else ""
      val storageInfo = rdd.context.getRDDStorageInfo(_.id == rdd.id).map(info =>
        "    CachedPartitions: %d; MemorySize: %s; DiskSize: %s".format(
          info.numCachedPartitions, bytesToString(info.memSize), bytesToString(info.diskSize)))

      s"$rdd [$persistence]" +: storageInfo
    }

    // Apply a different rule to the last child
    def debugChildren(rdd: RDD[_], prefix: String): Seq[String] = {
      val len = rdd.dependencies.length
      len match {
        case 0 => Seq.empty
        case 1 =>
          val d = rdd.dependencies.head
          debugString(d.rdd, prefix, d.isInstanceOf[ShuffleDependency[_, _, _]], true)
        case _ =>
          val frontDeps = rdd.dependencies.take(len - 1)
          val frontDepStrings = frontDeps.flatMap(
            d => debugString(d.rdd, prefix, d.isInstanceOf[ShuffleDependency[_, _, _]]))

          val lastDep = rdd.dependencies.last
          val lastDepStrings =
            debugString(lastDep.rdd, prefix, lastDep.isInstanceOf[ShuffleDependency[_, _, _]], true)

          frontDepStrings ++ lastDepStrings
      }
    }
    // The first RDD in the dependency stack has no parents, so no need for a +-
    def firstDebugString(rdd: RDD[_]): Seq[String] = {
      val partitionStr = "(" + rdd.partitions.length + ")"
      val leftOffset = (partitionStr.length - 1) / 2
      val nextPrefix = (" " * leftOffset) + "|" + (" " * (partitionStr.length - leftOffset))

      debugSelf(rdd).zipWithIndex.map{
        case (desc: String, 0) => s"$partitionStr $desc"
        case (desc: String, _) => s"$nextPrefix $desc"
      } ++ debugChildren(rdd, nextPrefix)
    }
    def shuffleDebugString(rdd: RDD[_], prefix: String = "", isLastChild: Boolean): Seq[String] = {
      val partitionStr = "(" + rdd.partitions.length + ")"
      val leftOffset = (partitionStr.length - 1) / 2
      val thisPrefix = prefix.replaceAll("\\|\\s+$", "")
      val nextPrefix = (
        thisPrefix
        + (if (isLastChild) "  " else "| ")
        + (" " * leftOffset) + "|" + (" " * (partitionStr.length - leftOffset)))

      debugSelf(rdd).zipWithIndex.map{
        case (desc: String, 0) => s"$thisPrefix+-$partitionStr $desc"
        case (desc: String, _) => s"$nextPrefix$desc"
      } ++ debugChildren(rdd, nextPrefix)
    }
    def debugString(
        rdd: RDD[_],
        prefix: String = "",
        isShuffle: Boolean = true,
        isLastChild: Boolean = false): Seq[String] = {
      if (isShuffle) {
        shuffleDebugString(rdd, prefix, isLastChild)
      } else {
        debugSelf(rdd).map(prefix + _) ++ debugChildren(rdd, prefix)
      }
    }
    firstDebugString(this).mkString("\n")
  }

  override def toString: String = "%s%s[%d] at %s".format(
    Option(name).map(_ + " ").getOrElse(""), getClass.getSimpleName, id, getCreationSite)

  def toJavaRDD() : JavaRDD[T] = {
    new JavaRDD(this)(elementClassTag)
  }

  /**
   * Whether the RDD is in a barrier stage. Spark must launch all the tasks at the same time for a
   * barrier stage.
   *
   * An RDD is in a barrier stage, if at least one of its parent RDD(s), or itself, are mapped from
   * an [[RDDBarrier]]. This function always returns false for a [[ShuffledRDD]], since a
   * [[ShuffledRDD]] indicates start of a new stage.
   *
   * A [[MapPartitionsRDD]] can be transformed from an [[RDDBarrier]], under that case the
   * [[MapPartitionsRDD]] shall be marked as barrier.
   */
  private[spark] def isBarrier(): Boolean = isBarrier_

  // From performance concern, cache the value to avoid repeatedly compute `isBarrier()` on a long
  // RDD chain.
  @transient protected lazy val isBarrier_ : Boolean =
    dependencies.filter(!_.isInstanceOf[ShuffleDependency[_, _, _]]).exists(_.rdd.isBarrier())

  private final lazy val _outputDeterministicLevel: DeterministicLevel.Value =
    getOutputDeterministicLevel

  /**
   * Returns the deterministic level of this RDD's output. Please refer to [[DeterministicLevel]]
   * for the definition.
   *
   * By default, an reliably checkpointed RDD, or RDD without parents(root RDD) is DETERMINATE. For
   * RDDs with parents, we will generate a deterministic level candidate per parent according to
   * the dependency. The deterministic level of the current RDD is the deterministic level
   * candidate that is deterministic least. Please override [[getOutputDeterministicLevel]] to
   * provide custom logic of calculating output deterministic level.
   */
  // TODO(SPARK-34612): make it public so users can set deterministic level to their custom RDDs.
  // TODO: this can be per-partition. e.g. UnionRDD can have different deterministic level for
  // different partitions.
  private[spark] final def outputDeterministicLevel: DeterministicLevel.Value = {
    if (isReliablyCheckpointed) {
      DeterministicLevel.DETERMINATE
    } else {
      _outputDeterministicLevel
    }
  }

  @DeveloperApi
  protected def getOutputDeterministicLevel: DeterministicLevel.Value = {
    val deterministicLevelCandidates = dependencies.map {
      // The shuffle is not really happening, treat it like narrow dependency and assume the output
      // deterministic level of current RDD is same as parent.
      case dep: ShuffleDependency[_, _, _] if dep.rdd.partitioner.exists(_ == dep.partitioner) =>
        dep.rdd.outputDeterministicLevel

      case dep: ShuffleDependency[_, _, _] =>
        if (dep.rdd.outputDeterministicLevel == DeterministicLevel.INDETERMINATE) {
          // If map output was indeterminate, shuffle output will be indeterminate as well
          DeterministicLevel.INDETERMINATE
        } else if (dep.keyOrdering.isDefined && dep.aggregator.isDefined) {
          // if aggregator specified (and so unique keys) and key ordering specified - then
          // consistent ordering.
          DeterministicLevel.DETERMINATE
        } else {
          // In Spark, the reducer fetches multiple remote shuffle blocks at the same time, and
          // the arrival order of these shuffle blocks are totally random. Even if the parent map
          // RDD is DETERMINATE, the reduce RDD is always UNORDERED.
          DeterministicLevel.UNORDERED
        }

      // For narrow dependency, assume the output deterministic level of current RDD is same as
      // parent.
      case dep => dep.rdd.outputDeterministicLevel
    }

    if (deterministicLevelCandidates.isEmpty) {
      // By default we assume the root RDD is determinate.
      DeterministicLevel.DETERMINATE
    } else {
      deterministicLevelCandidates.maxBy(_.id)
    }
  }

}


/**
 * Defines implicit functions that provide extra functionalities on RDDs of specific types.
 *
 * For example, [[RDD.rddToPairRDDFunctions]] converts an RDD into a [[PairRDDFunctions]] for
 * key-value-pair RDDs, and enabling extra functionalities such as `PairRDDFunctions.reduceByKey`.
 */
object RDD {

  private[spark] val CHECKPOINT_ALL_MARKED_ANCESTORS =
    "spark.checkpoint.checkpointAllMarkedAncestors"

  // The following implicit functions were in SparkContext before 1.3 and users had to
  // `import SparkContext._` to enable them. Now we move them here to make the compiler find
  // them automatically. However, we still keep the old functions in SparkContext for backward
  // compatibility and forward to the following functions directly.

  implicit def rddToPairRDDFunctions[K, V](rdd: RDD[(K, V)])
    (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairRDDFunctions[K, V] = {
    new PairRDDFunctions(rdd)
  }

  implicit def rddToAsyncRDDActions[T: ClassTag](rdd: RDD[T]): AsyncRDDActions[T] = {
    new AsyncRDDActions(rdd)
  }

  implicit def rddToSequenceFileRDDFunctions[K, V](rdd: RDD[(K, V)])
      (implicit kt: ClassTag[K], vt: ClassTag[V],
                keyWritableFactory: WritableFactory[K],
                valueWritableFactory: WritableFactory[V])
    : SequenceFileRDDFunctions[K, V] = {
    implicit val keyConverter = keyWritableFactory.convert
    implicit val valueConverter = valueWritableFactory.convert
    new SequenceFileRDDFunctions(rdd,
      keyWritableFactory.writableClass(kt), valueWritableFactory.writableClass(vt))
  }

  implicit def rddToOrderedRDDFunctions[K : Ordering : ClassTag, V: ClassTag](rdd: RDD[(K, V)])
    : OrderedRDDFunctions[K, V, (K, V)] = {
    new OrderedRDDFunctions[K, V, (K, V)](rdd)
  }

  implicit def doubleRDDToDoubleRDDFunctions(rdd: RDD[Double]): DoubleRDDFunctions = {
    new DoubleRDDFunctions(rdd)
  }

  implicit def numericRDDToDoubleRDDFunctions[T](rdd: RDD[T])(implicit num: Numeric[T])
    : DoubleRDDFunctions = {
    new DoubleRDDFunctions(rdd.map(x => num.toDouble(x)))
  }
}

/**
 * The deterministic level of RDD's output (i.e. what `RDD#compute` returns). This explains how
 * the output will diff when Spark reruns the tasks for the RDD. There are 3 deterministic levels:
 * 1. DETERMINATE: The RDD output is always the same data set in the same order after a rerun.
 * 2. UNORDERED: The RDD output is always the same data set but the order can be different
 *               after a rerun.
 * 3. INDETERMINATE. The RDD output can be different after a rerun.
 *
 * Note that, the output of an RDD usually relies on the parent RDDs. When the parent RDD's output
 * is INDETERMINATE, it's very likely the RDD's output is also INDETERMINATE.
 */
private[spark] object DeterministicLevel extends Enumeration {
  val DETERMINATE, UNORDERED, INDETERMINATE = Value
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞