spark PythonRunner 源码

  • 2022-10-20
  • 浏览 (413)

spark PythonRunner 代码

文件路径:/core/src/main/scala/org/apache/spark/api/python/PythonRunner.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.api.python

import java.io._
import java.net._
import java.nio.charset.StandardCharsets
import java.nio.charset.StandardCharsets.UTF_8
import java.nio.file.{Files => JavaFiles, Path}
import java.util.concurrent.ConcurrentHashMap
import java.util.concurrent.atomic.AtomicBoolean

import scala.collection.JavaConverters._
import scala.util.control.NonFatal

import org.apache.spark._
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.{BUFFER_SIZE, EXECUTOR_CORES}
import org.apache.spark.internal.config.Python._
import org.apache.spark.resource.ResourceProfile.{EXECUTOR_CORES_LOCAL_PROPERTY, PYSPARK_MEMORY_LOCAL_PROPERTY}
import org.apache.spark.security.SocketAuthHelper
import org.apache.spark.util._


/**
 * Enumerate the type of command that will be sent to the Python worker
 */
private[spark] object PythonEvalType {
  val NON_UDF = 0

  val SQL_BATCHED_UDF = 100

  val SQL_SCALAR_PANDAS_UDF = 200
  val SQL_GROUPED_MAP_PANDAS_UDF = 201
  val SQL_GROUPED_AGG_PANDAS_UDF = 202
  val SQL_WINDOW_AGG_PANDAS_UDF = 203
  val SQL_SCALAR_PANDAS_ITER_UDF = 204
  val SQL_MAP_PANDAS_ITER_UDF = 205
  val SQL_COGROUPED_MAP_PANDAS_UDF = 206
  val SQL_MAP_ARROW_ITER_UDF = 207
  val SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE = 208

  def toString(pythonEvalType: Int): String = pythonEvalType match {
    case NON_UDF => "NON_UDF"
    case SQL_BATCHED_UDF => "SQL_BATCHED_UDF"
    case SQL_SCALAR_PANDAS_UDF => "SQL_SCALAR_PANDAS_UDF"
    case SQL_GROUPED_MAP_PANDAS_UDF => "SQL_GROUPED_MAP_PANDAS_UDF"
    case SQL_GROUPED_AGG_PANDAS_UDF => "SQL_GROUPED_AGG_PANDAS_UDF"
    case SQL_WINDOW_AGG_PANDAS_UDF => "SQL_WINDOW_AGG_PANDAS_UDF"
    case SQL_SCALAR_PANDAS_ITER_UDF => "SQL_SCALAR_PANDAS_ITER_UDF"
    case SQL_MAP_PANDAS_ITER_UDF => "SQL_MAP_PANDAS_ITER_UDF"
    case SQL_COGROUPED_MAP_PANDAS_UDF => "SQL_COGROUPED_MAP_PANDAS_UDF"
    case SQL_MAP_ARROW_ITER_UDF => "SQL_MAP_ARROW_ITER_UDF"
    case SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE => "SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE"
  }
}

private object BasePythonRunner {

  private lazy val faultHandlerLogDir = Utils.createTempDir(namePrefix = "faulthandler")

  private def faultHandlerLogPath(pid: Int): Path = {
    new File(faultHandlerLogDir, pid.toString).toPath
  }
}

/**
 * A helper class to run Python mapPartition/UDFs in Spark.
 *
 * funcs is a list of independent Python functions, each one of them is a list of chained Python
 * functions (from bottom to top).
 */
private[spark] abstract class BasePythonRunner[IN, OUT](
    protected val funcs: Seq[ChainedPythonFunctions],
    protected val evalType: Int,
    protected val argOffsets: Array[Array[Int]])
  extends Logging {

  require(funcs.length == argOffsets.length, "argOffsets should have the same length as funcs")

  private val conf = SparkEnv.get.conf
  protected val bufferSize: Int = conf.get(BUFFER_SIZE)
  protected val authSocketTimeout = conf.get(PYTHON_AUTH_SOCKET_TIMEOUT)
  private val reuseWorker = conf.get(PYTHON_WORKER_REUSE)
  private val faultHandlerEnabled = conf.get(PYTHON_WORKER_FAULTHANLDER_ENABLED)
  protected val simplifiedTraceback: Boolean = false

  // All the Python functions should have the same exec, version and envvars.
  protected val envVars: java.util.Map[String, String] = funcs.head.funcs.head.envVars
  protected val pythonExec: String = funcs.head.funcs.head.pythonExec
  protected val pythonVer: String = funcs.head.funcs.head.pythonVer

  // TODO: support accumulator in multiple UDF
  protected val accumulator: PythonAccumulatorV2 = funcs.head.funcs.head.accumulator

  // Python accumulator is always set in production except in tests. See SPARK-27893
  private val maybeAccumulator: Option[PythonAccumulatorV2] = Option(accumulator)

  // Expose a ServerSocket to support method calls via socket from Python side.
  private[spark] var serverSocket: Option[ServerSocket] = None

  // Authentication helper used when serving method calls via socket from Python side.
  private lazy val authHelper = new SocketAuthHelper(conf)

  // each python worker gets an equal part of the allocation. the worker pool will grow to the
  // number of concurrent tasks, which is determined by the number of cores in this executor.
  private def getWorkerMemoryMb(mem: Option[Long], cores: Int): Option[Long] = {
    mem.map(_ / cores)
  }

  def compute(
      inputIterator: Iterator[IN],
      partitionIndex: Int,
      context: TaskContext): Iterator[OUT] = {
    val startTime = System.currentTimeMillis
    val env = SparkEnv.get

    // Get the executor cores and pyspark memory, they are passed via the local properties when
    // the user specified them in a ResourceProfile.
    val execCoresProp = Option(context.getLocalProperty(EXECUTOR_CORES_LOCAL_PROPERTY))
    val memoryMb = Option(context.getLocalProperty(PYSPARK_MEMORY_LOCAL_PROPERTY)).map(_.toLong)
    val localdir = env.blockManager.diskBlockManager.localDirs.map(f => f.getPath()).mkString(",")
    // if OMP_NUM_THREADS is not explicitly set, override it with the number of cores
    if (conf.getOption("spark.executorEnv.OMP_NUM_THREADS").isEmpty) {
      // SPARK-28843: limit the OpenMP thread pool to the number of cores assigned to this executor
      // this avoids high memory consumption with pandas/numpy because of a large OpenMP thread pool
      // see https://github.com/numpy/numpy/issues/10455
      execCoresProp.foreach(envVars.put("OMP_NUM_THREADS", _))
    }
    envVars.put("SPARK_LOCAL_DIRS", localdir) // it's also used in monitor thread
    if (reuseWorker) {
      envVars.put("SPARK_REUSE_WORKER", "1")
    }
    if (simplifiedTraceback) {
      envVars.put("SPARK_SIMPLIFIED_TRACEBACK", "1")
    }
    // SPARK-30299 this could be wrong with standalone mode when executor
    // cores might not be correct because it defaults to all cores on the box.
    val execCores = execCoresProp.map(_.toInt).getOrElse(conf.get(EXECUTOR_CORES))
    val workerMemoryMb = getWorkerMemoryMb(memoryMb, execCores)
    if (workerMemoryMb.isDefined) {
      envVars.put("PYSPARK_EXECUTOR_MEMORY_MB", workerMemoryMb.get.toString)
    }
    envVars.put("SPARK_AUTH_SOCKET_TIMEOUT", authSocketTimeout.toString)
    envVars.put("SPARK_BUFFER_SIZE", bufferSize.toString)
    if (faultHandlerEnabled) {
      envVars.put("PYTHON_FAULTHANDLER_DIR", BasePythonRunner.faultHandlerLogDir.toString)
    }

    val (worker: Socket, pid: Option[Int]) = env.createPythonWorker(
      pythonExec, envVars.asScala.toMap)
    // Whether is the worker released into idle pool or closed. When any codes try to release or
    // close a worker, they should use `releasedOrClosed.compareAndSet` to flip the state to make
    // sure there is only one winner that is going to release or close the worker.
    val releasedOrClosed = new AtomicBoolean(false)

    // Start a thread to feed the process input from our parent's iterator
    val writerThread = newWriterThread(env, worker, inputIterator, partitionIndex, context)

    context.addTaskCompletionListener[Unit] { _ =>
      writerThread.shutdownOnTaskCompletion()
      if (!reuseWorker || releasedOrClosed.compareAndSet(false, true)) {
        try {
          worker.close()
        } catch {
          case e: Exception =>
            logWarning("Failed to close worker socket", e)
        }
      }
    }

    writerThread.start()
    new WriterMonitorThread(SparkEnv.get, worker, writerThread, context).start()
    if (reuseWorker) {
      val key = (worker, context.taskAttemptId)
      // SPARK-35009: avoid creating multiple monitor threads for the same python worker
      // and task context
      if (PythonRunner.runningMonitorThreads.add(key)) {
        new MonitorThread(SparkEnv.get, worker, context).start()
      }
    } else {
      new MonitorThread(SparkEnv.get, worker, context).start()
    }

    // Return an iterator that read lines from the process's stdout
    val stream = new DataInputStream(new BufferedInputStream(worker.getInputStream, bufferSize))

    val stdoutIterator = newReaderIterator(
      stream, writerThread, startTime, env, worker, pid, releasedOrClosed, context)
    new InterruptibleIterator(context, stdoutIterator)
  }

  protected def newWriterThread(
      env: SparkEnv,
      worker: Socket,
      inputIterator: Iterator[IN],
      partitionIndex: Int,
      context: TaskContext): WriterThread

  protected def newReaderIterator(
      stream: DataInputStream,
      writerThread: WriterThread,
      startTime: Long,
      env: SparkEnv,
      worker: Socket,
      pid: Option[Int],
      releasedOrClosed: AtomicBoolean,
      context: TaskContext): Iterator[OUT]

  /**
   * The thread responsible for writing the data from the PythonRDD's parent iterator to the
   * Python process.
   */
  abstract class WriterThread(
      env: SparkEnv,
      worker: Socket,
      inputIterator: Iterator[IN],
      partitionIndex: Int,
      context: TaskContext)
    extends Thread(s"stdout writer for $pythonExec") {

    @volatile private var _exception: Throwable = null

    private val pythonIncludes = funcs.flatMap(_.funcs.flatMap(_.pythonIncludes.asScala)).toSet
    private val broadcastVars = funcs.flatMap(_.funcs.flatMap(_.broadcastVars.asScala))

    setDaemon(true)

    /** Contains the throwable thrown while writing the parent iterator to the Python process. */
    def exception: Option[Throwable] = Option(_exception)

    /**
     * Terminates the writer thread and waits for it to exit, ignoring any exceptions that may occur
     * due to cleanup.
     */
    def shutdownOnTaskCompletion(): Unit = {
      assert(context.isCompleted)
      this.interrupt()
      // Task completion listeners that run after this method returns may invalidate
      // `inputIterator`. For example, when `inputIterator` was generated by the off-heap vectorized
      // reader, a task completion listener will free the underlying off-heap buffers. If the writer
      // thread is still running when `inputIterator` is invalidated, it can cause a use-after-free
      // bug that crashes the executor (SPARK-33277). Therefore this method must wait for the writer
      // thread to exit before returning.
      this.join()
    }

    /**
     * Writes a command section to the stream connected to the Python worker.
     */
    protected def writeCommand(dataOut: DataOutputStream): Unit

    /**
     * Writes input data to the stream connected to the Python worker.
     */
    protected def writeIteratorToStream(dataOut: DataOutputStream): Unit

    override def run(): Unit = Utils.logUncaughtExceptions {
      try {
        TaskContext.setTaskContext(context)
        val stream = new BufferedOutputStream(worker.getOutputStream, bufferSize)
        val dataOut = new DataOutputStream(stream)
        // Partition index
        dataOut.writeInt(partitionIndex)
        // Python version of driver
        PythonRDD.writeUTF(pythonVer, dataOut)
        // Init a ServerSocket to accept method calls from Python side.
        val isBarrier = context.isInstanceOf[BarrierTaskContext]
        if (isBarrier) {
          serverSocket = Some(new ServerSocket(/* port */ 0,
            /* backlog */ 1,
            InetAddress.getByName("localhost")))
          // A call to accept() for ServerSocket shall block infinitely.
          serverSocket.foreach(_.setSoTimeout(0))
          new Thread("accept-connections") {
            setDaemon(true)

            override def run(): Unit = {
              while (!serverSocket.get.isClosed()) {
                var sock: Socket = null
                try {
                  sock = serverSocket.get.accept()
                  // Wait for function call from python side.
                  sock.setSoTimeout(10000)
                  authHelper.authClient(sock)
                  val input = new DataInputStream(sock.getInputStream())
                  val requestMethod = input.readInt()
                  // The BarrierTaskContext function may wait infinitely, socket shall not timeout
                  // before the function finishes.
                  sock.setSoTimeout(0)
                  requestMethod match {
                    case BarrierTaskContextMessageProtocol.BARRIER_FUNCTION =>
                      barrierAndServe(requestMethod, sock)
                    case BarrierTaskContextMessageProtocol.ALL_GATHER_FUNCTION =>
                      val length = input.readInt()
                      val message = new Array[Byte](length)
                      input.readFully(message)
                      barrierAndServe(requestMethod, sock, new String(message, UTF_8))
                    case _ =>
                      val out = new DataOutputStream(new BufferedOutputStream(
                        sock.getOutputStream))
                      writeUTF(BarrierTaskContextMessageProtocol.ERROR_UNRECOGNIZED_FUNCTION, out)
                  }
                } catch {
                  case e: SocketException if e.getMessage.contains("Socket closed") =>
                    // It is possible that the ServerSocket is not closed, but the native socket
                    // has already been closed, we shall catch and silently ignore this case.
                } finally {
                  if (sock != null) {
                    sock.close()
                  }
                }
              }
            }
          }.start()
        }
        val secret = if (isBarrier) {
          authHelper.secret
        } else {
          ""
        }
        // Close ServerSocket on task completion.
        serverSocket.foreach { server =>
          context.addTaskCompletionListener[Unit](_ => server.close())
        }
        val boundPort: Int = serverSocket.map(_.getLocalPort).getOrElse(0)
        if (boundPort == -1) {
          val message = "ServerSocket failed to bind to Java side."
          logError(message)
          throw new SparkException(message)
        } else if (isBarrier) {
          logDebug(s"Started ServerSocket on port $boundPort.")
        }
        // Write out the TaskContextInfo
        dataOut.writeBoolean(isBarrier)
        dataOut.writeInt(boundPort)
        val secretBytes = secret.getBytes(UTF_8)
        dataOut.writeInt(secretBytes.length)
        dataOut.write(secretBytes, 0, secretBytes.length)
        dataOut.writeInt(context.stageId())
        dataOut.writeInt(context.partitionId())
        dataOut.writeInt(context.attemptNumber())
        dataOut.writeLong(context.taskAttemptId())
        dataOut.writeInt(context.cpus())
        val resources = context.resources()
        dataOut.writeInt(resources.size)
        resources.foreach { case (k, v) =>
          PythonRDD.writeUTF(k, dataOut)
          PythonRDD.writeUTF(v.name, dataOut)
          dataOut.writeInt(v.addresses.size)
          v.addresses.foreach { case addr =>
            PythonRDD.writeUTF(addr, dataOut)
          }
        }
        val localProps = context.getLocalProperties.asScala
        dataOut.writeInt(localProps.size)
        localProps.foreach { case (k, v) =>
          PythonRDD.writeUTF(k, dataOut)
          PythonRDD.writeUTF(v, dataOut)
        }

        // sparkFilesDir
        PythonRDD.writeUTF(SparkFiles.getRootDirectory(), dataOut)
        // Python includes (*.zip and *.egg files)
        dataOut.writeInt(pythonIncludes.size)
        for (include <- pythonIncludes) {
          PythonRDD.writeUTF(include, dataOut)
        }
        // Broadcast variables
        val oldBids = PythonRDD.getWorkerBroadcasts(worker)
        val newBids = broadcastVars.map(_.id).toSet
        // number of different broadcasts
        val toRemove = oldBids.diff(newBids)
        val addedBids = newBids.diff(oldBids)
        val cnt = toRemove.size + addedBids.size
        val needsDecryptionServer = env.serializerManager.encryptionEnabled && addedBids.nonEmpty
        dataOut.writeBoolean(needsDecryptionServer)
        dataOut.writeInt(cnt)
        def sendBidsToRemove(): Unit = {
          for (bid <- toRemove) {
            // remove the broadcast from worker
            dataOut.writeLong(-bid - 1) // bid >= 0
            oldBids.remove(bid)
          }
        }
        if (needsDecryptionServer) {
          // if there is encryption, we setup a server which reads the encrypted files, and sends
          // the decrypted data to python
          val idsAndFiles = broadcastVars.flatMap { broadcast =>
            if (!oldBids.contains(broadcast.id)) {
              Some((broadcast.id, broadcast.value.path))
            } else {
              None
            }
          }
          val server = new EncryptedPythonBroadcastServer(env, idsAndFiles)
          dataOut.writeInt(server.port)
          logTrace(s"broadcast decryption server setup on ${server.port}")
          PythonRDD.writeUTF(server.secret, dataOut)
          sendBidsToRemove()
          idsAndFiles.foreach { case (id, _) =>
            // send new broadcast
            dataOut.writeLong(id)
            oldBids.add(id)
          }
          dataOut.flush()
          logTrace("waiting for python to read decrypted broadcast data from server")
          server.waitTillBroadcastDataSent()
          logTrace("done sending decrypted data to python")
        } else {
          sendBidsToRemove()
          for (broadcast <- broadcastVars) {
            if (!oldBids.contains(broadcast.id)) {
              // send new broadcast
              dataOut.writeLong(broadcast.id)
              PythonRDD.writeUTF(broadcast.value.path, dataOut)
              oldBids.add(broadcast.id)
            }
          }
        }
        dataOut.flush()

        dataOut.writeInt(evalType)
        writeCommand(dataOut)
        writeIteratorToStream(dataOut)

        dataOut.writeInt(SpecialLengths.END_OF_STREAM)
        dataOut.flush()
      } catch {
        case t: Throwable if (NonFatal(t) || t.isInstanceOf[Exception]) =>
          if (context.isCompleted || context.isInterrupted) {
            logDebug("Exception/NonFatal Error thrown after task completion (likely due to " +
              "cleanup)", t)
            if (!worker.isClosed) {
              Utils.tryLog(worker.shutdownOutput())
            }
          } else {
            // We must avoid throwing exceptions/NonFatals here, because the thread uncaught
            // exception handler will kill the whole executor (see
            // org.apache.spark.executor.Executor).
            _exception = t
            if (!worker.isClosed) {
              Utils.tryLog(worker.shutdownOutput())
            }
          }
      }
    }

    /**
     * Gateway to call BarrierTaskContext methods.
     */
    def barrierAndServe(requestMethod: Int, sock: Socket, message: String = ""): Unit = {
      require(
        serverSocket.isDefined,
        "No available ServerSocket to redirect the BarrierTaskContext method call."
      )
      val out = new DataOutputStream(new BufferedOutputStream(sock.getOutputStream))
      try {
        val messages = requestMethod match {
          case BarrierTaskContextMessageProtocol.BARRIER_FUNCTION =>
            context.asInstanceOf[BarrierTaskContext].barrier()
            Array(BarrierTaskContextMessageProtocol.BARRIER_RESULT_SUCCESS)
          case BarrierTaskContextMessageProtocol.ALL_GATHER_FUNCTION =>
            context.asInstanceOf[BarrierTaskContext].allGather(message)
        }
        out.writeInt(messages.length)
        messages.foreach(writeUTF(_, out))
      } catch {
        case e: SparkException =>
          writeUTF(e.getMessage, out)
      } finally {
        out.close()
      }
    }

    def writeUTF(str: String, dataOut: DataOutputStream): Unit = {
      val bytes = str.getBytes(UTF_8)
      dataOut.writeInt(bytes.length)
      dataOut.write(bytes)
    }
  }

  abstract class ReaderIterator(
      stream: DataInputStream,
      writerThread: WriterThread,
      startTime: Long,
      env: SparkEnv,
      worker: Socket,
      pid: Option[Int],
      releasedOrClosed: AtomicBoolean,
      context: TaskContext)
    extends Iterator[OUT] {

    private var nextObj: OUT = _
    private var eos = false

    override def hasNext: Boolean = nextObj != null || {
      if (!eos) {
        nextObj = read()
        hasNext
      } else {
        false
      }
    }

    override def next(): OUT = {
      if (hasNext) {
        val obj = nextObj
        nextObj = null.asInstanceOf[OUT]
        obj
      } else {
        Iterator.empty.next()
      }
    }

    /**
     * Reads next object from the stream.
     * When the stream reaches end of data, needs to process the following sections,
     * and then returns null.
     */
    protected def read(): OUT

    protected def handleTimingData(): Unit = {
      // Timing data from worker
      val bootTime = stream.readLong()
      val initTime = stream.readLong()
      val finishTime = stream.readLong()
      val boot = bootTime - startTime
      val init = initTime - bootTime
      val finish = finishTime - initTime
      val total = finishTime - startTime
      logInfo("Times: total = %s, boot = %s, init = %s, finish = %s".format(total, boot,
        init, finish))
      val memoryBytesSpilled = stream.readLong()
      val diskBytesSpilled = stream.readLong()
      context.taskMetrics.incMemoryBytesSpilled(memoryBytesSpilled)
      context.taskMetrics.incDiskBytesSpilled(diskBytesSpilled)
    }

    protected def handlePythonException(): PythonException = {
      // Signals that an exception has been thrown in python
      val exLength = stream.readInt()
      val obj = new Array[Byte](exLength)
      stream.readFully(obj)
      new PythonException(new String(obj, StandardCharsets.UTF_8),
        writerThread.exception.orNull)
    }

    protected def handleEndOfDataSection(): Unit = {
      // We've finished the data section of the output, but we can still
      // read some accumulator updates:
      val numAccumulatorUpdates = stream.readInt()
      (1 to numAccumulatorUpdates).foreach { _ =>
        val updateLen = stream.readInt()
        val update = new Array[Byte](updateLen)
        stream.readFully(update)
        maybeAccumulator.foreach(_.add(update))
      }
      // Check whether the worker is ready to be re-used.
      if (stream.readInt() == SpecialLengths.END_OF_STREAM) {
        if (reuseWorker && releasedOrClosed.compareAndSet(false, true)) {
          env.releasePythonWorker(pythonExec, envVars.asScala.toMap, worker)
        }
      }
      eos = true
    }

    protected val handleException: PartialFunction[Throwable, OUT] = {
      case e: Exception if context.isInterrupted =>
        logDebug("Exception thrown after task interruption", e)
        throw new TaskKilledException(context.getKillReason().getOrElse("unknown reason"))

      case e: Exception if writerThread.exception.isDefined =>
        logError("Python worker exited unexpectedly (crashed)", e)
        logError("This may have been caused by a prior exception:", writerThread.exception.get)
        throw writerThread.exception.get

      case eof: EOFException if faultHandlerEnabled && pid.isDefined &&
          JavaFiles.exists(BasePythonRunner.faultHandlerLogPath(pid.get)) =>
        val path = BasePythonRunner.faultHandlerLogPath(pid.get)
        val error = String.join("\n", JavaFiles.readAllLines(path)) + "\n"
        JavaFiles.deleteIfExists(path)
        throw new SparkException(s"Python worker exited unexpectedly (crashed): $error", eof)

      case eof: EOFException =>
        throw new SparkException("Python worker exited unexpectedly (crashed)", eof)
    }
  }

  /**
   * It is necessary to have a monitor thread for python workers if the user cancels with
   * interrupts disabled. In that case we will need to explicitly kill the worker, otherwise the
   * threads can block indefinitely.
   */
  class MonitorThread(env: SparkEnv, worker: Socket, context: TaskContext)
    extends Thread(s"Worker Monitor for $pythonExec") {

    /** How long to wait before killing the python worker if a task cannot be interrupted. */
    private val taskKillTimeout = env.conf.get(PYTHON_TASK_KILL_TIMEOUT)

    setDaemon(true)

    private def monitorWorker(): Unit = {
      // Kill the worker if it is interrupted, checking until task completion.
      // TODO: This has a race condition if interruption occurs, as completed may still become true.
      while (!context.isInterrupted && !context.isCompleted) {
        Thread.sleep(2000)
      }
      if (!context.isCompleted) {
        Thread.sleep(taskKillTimeout)
        if (!context.isCompleted) {
          try {
            // Mimic the task name used in `Executor` to help the user find out the task to blame.
            val taskName = s"${context.partitionId}.${context.attemptNumber} " +
              s"in stage ${context.stageId} (TID ${context.taskAttemptId})"
            logWarning(s"Incomplete task $taskName interrupted: Attempting to kill Python Worker")
            env.destroyPythonWorker(pythonExec, envVars.asScala.toMap, worker)
          } catch {
            case e: Exception =>
              logError("Exception when trying to kill worker", e)
          }
        }
      }
    }

    override def run(): Unit = {
      try {
        monitorWorker()
      } finally {
        if (reuseWorker) {
          val key = (worker, context.taskAttemptId)
          PythonRunner.runningMonitorThreads.remove(key)
        }
      }
    }
  }

  /**
   * This thread monitors the WriterThread and kills it in case of deadlock.
   *
   * A deadlock can arise if the task completes while the writer thread is sending input to the
   * Python process (e.g. due to the use of `take()`), and the Python process is still producing
   * output. When the inputs are sufficiently large, this can result in a deadlock due to the use of
   * blocking I/O (SPARK-38677). To resolve the deadlock, we need to close the socket.
   */
  class WriterMonitorThread(
      env: SparkEnv, worker: Socket, writerThread: WriterThread, context: TaskContext)
    extends Thread(s"Writer Monitor for $pythonExec (writer thread id ${writerThread.getId})") {

    /**
     * How long to wait before closing the socket if the writer thread has not exited after the task
     * ends.
     */
    private val taskKillTimeout = env.conf.get(PYTHON_TASK_KILL_TIMEOUT)

    setDaemon(true)

    override def run(): Unit = {
      // Wait until the task is completed (or the writer thread exits, in which case this thread has
      // nothing to do).
      while (!context.isCompleted && writerThread.isAlive) {
        Thread.sleep(2000)
      }
      if (writerThread.isAlive) {
        Thread.sleep(taskKillTimeout)
        // If the writer thread continues running, this indicates a deadlock. Kill the worker to
        // resolve the deadlock.
        if (writerThread.isAlive) {
          try {
            // Mimic the task name used in `Executor` to help the user find out the task to blame.
            val taskName = s"${context.partitionId}.${context.attemptNumber} " +
              s"in stage ${context.stageId} (TID ${context.taskAttemptId})"
            logWarning(
              s"Detected deadlock while completing task $taskName: " +
                "Attempting to kill Python Worker")
            env.destroyPythonWorker(pythonExec, envVars.asScala.toMap, worker)
          } catch {
            case e: Exception =>
              logError("Exception when trying to kill worker", e)
          }
        }
      }
    }
  }
}

private[spark] object PythonRunner {

  // already running worker monitor threads for worker and task attempts ID pairs
  val runningMonitorThreads = ConcurrentHashMap.newKeySet[(Socket, Long)]()

  def apply(func: PythonFunction): PythonRunner = {
    new PythonRunner(Seq(ChainedPythonFunctions(Seq(func))))
  }
}

/**
 * A helper class to run Python mapPartition in Spark.
 */
private[spark] class PythonRunner(funcs: Seq[ChainedPythonFunctions])
  extends BasePythonRunner[Array[Byte], Array[Byte]](
    funcs, PythonEvalType.NON_UDF, Array(Array(0))) {

  protected override def newWriterThread(
      env: SparkEnv,
      worker: Socket,
      inputIterator: Iterator[Array[Byte]],
      partitionIndex: Int,
      context: TaskContext): WriterThread = {
    new WriterThread(env, worker, inputIterator, partitionIndex, context) {

      protected override def writeCommand(dataOut: DataOutputStream): Unit = {
        val command = funcs.head.funcs.head.command
        dataOut.writeInt(command.length)
        dataOut.write(command.toArray)
      }

      protected override def writeIteratorToStream(dataOut: DataOutputStream): Unit = {
        PythonRDD.writeIteratorToStream(inputIterator, dataOut)
        dataOut.writeInt(SpecialLengths.END_OF_DATA_SECTION)
      }
    }
  }

  protected override def newReaderIterator(
      stream: DataInputStream,
      writerThread: WriterThread,
      startTime: Long,
      env: SparkEnv,
      worker: Socket,
      pid: Option[Int],
      releasedOrClosed: AtomicBoolean,
      context: TaskContext): Iterator[Array[Byte]] = {
    new ReaderIterator(
      stream, writerThread, startTime, env, worker, pid, releasedOrClosed, context) {

      protected override def read(): Array[Byte] = {
        if (writerThread.exception.isDefined) {
          throw writerThread.exception.get
        }
        try {
          stream.readInt() match {
            case length if length > 0 =>
              val obj = new Array[Byte](length)
              stream.readFully(obj)
              obj
            case 0 => Array.emptyByteArray
            case SpecialLengths.TIMING_DATA =>
              handleTimingData()
              read()
            case SpecialLengths.PYTHON_EXCEPTION_THROWN =>
              throw handlePythonException()
            case SpecialLengths.END_OF_DATA_SECTION =>
              handleEndOfDataSection()
              null
          }
        } catch handleException
      }
    }
  }
}

private[spark] object SpecialLengths {
  val END_OF_DATA_SECTION = -1
  val PYTHON_EXCEPTION_THROWN = -2
  val TIMING_DATA = -3
  val END_OF_STREAM = -4
  val NULL = -5
  val START_ARROW_STREAM = -6
}

private[spark] object BarrierTaskContextMessageProtocol {
  val BARRIER_FUNCTION = 1
  val ALL_GATHER_FUNCTION = 2
  val BARRIER_RESULT_SUCCESS = "success"
  val ERROR_UNRECOGNIZED_FUNCTION = "Not recognized function call from python side."
}

相关信息

spark 源码目录

相关文章

spark Py4JServer 源码

spark PythonGatewayServer 源码

spark PythonHadoopUtil 源码

spark PythonPartitioner 源码

spark PythonRDD 源码

spark PythonUtils 源码

spark PythonWorkerFactory 源码

spark SerDeUtil 源码

spark WriteInputFormatTestDataGenerator 源码

0  赞