spark PythonHadoopUtil 源码

  • 2022-10-20
  • 浏览 (321)

spark PythonHadoopUtil 代码

文件路径:/core/src/main/scala/org/apache/spark/api/python/PythonHadoopUtil.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.api.python

import scala.collection.JavaConverters._
import scala.util.{Failure, Success, Try}

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io._

import org.apache.spark.SparkException
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.util.{SerializableConfiguration, Utils}

/**
 * A trait for use with reading custom classes in PySpark. Implement this trait and add custom
 * transformation code by overriding the convert method.
 */
trait Converter[-T, +U] extends Serializable {
  def convert(obj: T): U
}

private[python] object Converter extends Logging {

  def getInstance[T, U](converterClass: Option[String],
                        defaultConverter: Converter[_ >: T, _ <: U]): Converter[T, U] = {
    converterClass.map { cc =>
      Try {
        val c = Utils.classForName[Converter[T, U]](cc).getConstructor().newInstance()
        logInfo(s"Loaded converter: $cc")
        c
      } match {
        case Success(c) => c
        case Failure(err) =>
          logError(s"Failed to load converter: $cc")
          throw err
      }
    }.getOrElse { defaultConverter }
  }
}

/**
 * A converter that handles conversion of common [[org.apache.hadoop.io.Writable]] objects.
 * Other objects are passed through without conversion.
 */
private[python] class WritableToJavaConverter(
    conf: Broadcast[SerializableConfiguration]) extends Converter[Any, Any] {

  /**
   * Converts a [[org.apache.hadoop.io.Writable]] to the underlying primitive, String or
   * object representation
   */
  private def convertWritable(writable: Writable): Any = {
    writable match {
      case iw: IntWritable => iw.get()
      case dw: DoubleWritable => dw.get()
      case lw: LongWritable => lw.get()
      case sw: ShortWritable => sw.get()
      case fw: FloatWritable => fw.get()
      case t: Text => t.toString
      case bw: BooleanWritable => bw.get()
      case byw: ByteWritable => byw.get()
      case byw: BytesWritable =>
        val bytes = new Array[Byte](byw.getLength)
        System.arraycopy(byw.getBytes(), 0, bytes, 0, byw.getLength)
        bytes
      case n: NullWritable => null
      case aw: ArrayWritable =>
        // Due to erasure, all arrays appear as Object[] and they get pickled to Python tuples.
        // Since we can't determine element types for empty arrays, we will not attempt to
        // convert to primitive arrays (which get pickled to Python arrays). Users may want
        // write custom converters for arrays if they know the element types a priori.
        aw.get().map(convertWritable(_))
      case mw: MapWritable =>
        val map = new java.util.HashMap[Any, Any]()
        mw.asScala.foreach { case (k, v) => map.put(convertWritable(k), convertWritable(v)) }
        map
      case w: Writable => WritableUtils.clone(w, conf.value.value)
      case other => other
    }
  }

  override def convert(obj: Any): Any = {
    obj match {
      case writable: Writable =>
        convertWritable(writable)
      case _ =>
        obj
    }
  }
}

/**
 * A converter that converts common types to [[org.apache.hadoop.io.Writable]]. Note that array
 * types are not supported since the user needs to subclass [[org.apache.hadoop.io.ArrayWritable]]
 * to set the type properly. See [[org.apache.spark.api.python.DoubleArrayWritable]] and
 * [[org.apache.spark.api.python.DoubleArrayToWritableConverter]] for an example. They are used in
 * PySpark RDD `saveAsNewAPIHadoopFile` doctest.
 */
private[python] class JavaToWritableConverter extends Converter[Any, Writable] {

  /**
   * Converts common data types to [[org.apache.hadoop.io.Writable]]. Note that array types are not
   * supported out-of-the-box.
   */
  private def convertToWritable(obj: Any): Writable = {
    obj match {
      case i: java.lang.Integer => new IntWritable(i)
      case d: java.lang.Double => new DoubleWritable(d)
      case l: java.lang.Long => new LongWritable(l)
      case s: java.lang.Short => new ShortWritable(s)
      case f: java.lang.Float => new FloatWritable(f)
      case s: java.lang.String => new Text(s)
      case b: java.lang.Boolean => new BooleanWritable(b)
      case b: java.lang.Byte => new ByteWritable(b)
      case aob: Array[Byte] => new BytesWritable(aob)
      case null => NullWritable.get()
      case map: java.util.Map[_, _] =>
        val mapWritable = new MapWritable()
        map.asScala.foreach { case (k, v) =>
          mapWritable.put(convertToWritable(k), convertToWritable(v))
        }
        mapWritable
      case array: Array[Any] =>
        val arrayWriteable = new ArrayWritable(classOf[Writable])
        arrayWriteable.set(array.map(convertToWritable(_)))
        arrayWriteable
      case other => throw new SparkException(
        s"Data of type ${other.getClass.getName} cannot be used")
    }
  }

  override def convert(obj: Any): Writable = obj match {
    case writable: Writable => writable
    case other => convertToWritable(other)
  }
}

/** Utilities for working with Python objects <-> Hadoop-related objects */
private[python] object PythonHadoopUtil {

  /**
   * Convert a [[java.util.Map]] of properties to a [[org.apache.hadoop.conf.Configuration]]
   */
  def mapToConf(map: java.util.Map[String, String]): Configuration = {
    val conf = new Configuration(false)
    map.asScala.foreach { case (k, v) => conf.set(k, v) }
    conf
  }

  /**
   * Merges two configurations, returns a copy of left with keys from right overwriting
   * any matching keys in left
   */
  def mergeConfs(left: Configuration, right: Configuration): Configuration = {
    val copy = new Configuration(left)
    right.asScala.foreach(entry => copy.set(entry.getKey, entry.getValue))
    copy
  }

  /**
   * Converts an RDD of key-value pairs, where key and/or value could be instances of
   * [[org.apache.hadoop.io.Writable]], into an RDD of base types, or vice versa.
   */
  def convertRDD[K, V](rdd: RDD[(K, V)],
                       keyConverter: Converter[K, Any],
                       valueConverter: Converter[V, Any]): RDD[(Any, Any)] = {
    rdd.map { case (k, v) => (keyConverter.convert(k), valueConverter.convert(v)) }
  }

}

相关信息

spark 源码目录

相关文章

spark Py4JServer 源码

spark PythonGatewayServer 源码

spark PythonPartitioner 源码

spark PythonRDD 源码

spark PythonRunner 源码

spark PythonUtils 源码

spark PythonWorkerFactory 源码

spark SerDeUtil 源码

spark WriteInputFormatTestDataGenerator 源码

0  赞