spark PythonRDD 源码

  • 2022-10-20
  • 浏览 (327)

spark PythonRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.api.python

import java.io._
import java.net._
import java.nio.charset.StandardCharsets
import java.util.{ArrayList => JArrayList, List => JList, Map => JMap}

import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.concurrent.duration.Duration
import scala.reflect.ClassTag

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.compress.CompressionCodec
import org.apache.hadoop.mapred.{InputFormat, JobConf, OutputFormat}
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat, OutputFormat => NewOutputFormat}

import org.apache.spark._
import org.apache.spark.api.java.{JavaPairRDD, JavaRDD, JavaSparkContext}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.input.PortableDataStream
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.BUFFER_SIZE
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.security.{SocketAuthHelper, SocketAuthServer, SocketFuncServer}
import org.apache.spark.storage.{BroadcastBlockId, StorageLevel}
import org.apache.spark.util._


private[spark] class PythonRDD(
    parent: RDD[_],
    func: PythonFunction,
    preservePartitioning: Boolean,
    isFromBarrier: Boolean = false)
  extends RDD[Array[Byte]](parent) {

  override def getPartitions: Array[Partition] = firstParent.partitions

  override val partitioner: Option[Partitioner] = {
    if (preservePartitioning) firstParent.partitioner else None
  }

  val asJavaRDD: JavaRDD[Array[Byte]] = JavaRDD.fromRDD(this)

  override def compute(split: Partition, context: TaskContext): Iterator[Array[Byte]] = {
    val runner = PythonRunner(func)
    runner.compute(firstParent.iterator(split, context), split.index, context)
  }

  @transient protected lazy override val isBarrier_ : Boolean =
    isFromBarrier || dependencies.exists(_.rdd.isBarrier())
}

/**
 * A wrapper for a Python function, contains all necessary context to run the function in Python
 * runner.
 */
private[spark] trait PythonFunction {
  def command: Seq[Byte]
  def envVars: JMap[String, String]
  def pythonIncludes: JList[String]
  def pythonExec: String
  def pythonVer: String
  def broadcastVars: JList[Broadcast[PythonBroadcast]]
  def accumulator: PythonAccumulatorV2
}

/**
 * A simple wrapper for a Python function created via pyspark.
 */
private[spark] case class SimplePythonFunction(
    command: Seq[Byte],
    envVars: JMap[String, String],
    pythonIncludes: JList[String],
    pythonExec: String,
    pythonVer: String,
    broadcastVars: JList[Broadcast[PythonBroadcast]],
    accumulator: PythonAccumulatorV2) extends PythonFunction {

  def this(
      command: Array[Byte],
      envVars: JMap[String, String],
      pythonIncludes: JList[String],
      pythonExec: String,
      pythonVer: String,
      broadcastVars: JList[Broadcast[PythonBroadcast]],
      accumulator: PythonAccumulatorV2) = {
    this(command.toSeq, envVars, pythonIncludes, pythonExec, pythonVer, broadcastVars, accumulator)
  }
}

/**
 * A wrapper for chained Python functions (from bottom to top).
 * @param funcs
 */
private[spark] case class ChainedPythonFunctions(funcs: Seq[PythonFunction])

/** Thrown for exceptions in user Python code. */
private[spark] class PythonException(msg: String, cause: Throwable)
  extends RuntimeException(msg, cause)

/**
 * Form an RDD[(Array[Byte], Array[Byte])] from key-value pairs returned from Python.
 * This is used by PySpark's shuffle operations.
 */
private class PairwiseRDD(prev: RDD[Array[Byte]]) extends RDD[(Long, Array[Byte])](prev) {
  override def getPartitions: Array[Partition] = prev.partitions
  override val partitioner: Option[Partitioner] = prev.partitioner
  override def compute(split: Partition, context: TaskContext): Iterator[(Long, Array[Byte])] =
    prev.iterator(split, context).grouped(2).map {
      case Seq(a, b) => (Utils.deserializeLongValue(a), b)
      case x => throw new SparkException("PairwiseRDD: unexpected value: " + x)
    }
  val asJavaPairRDD : JavaPairRDD[Long, Array[Byte]] = JavaPairRDD.fromRDD(this)
}

private[spark] object PythonRDD extends Logging {

  // remember the broadcasts sent to each worker
  private val workerBroadcasts = new mutable.WeakHashMap[Socket, mutable.Set[Long]]()

  // Authentication helper used when serving iterator data.
  private lazy val authHelper = {
    val conf = Option(SparkEnv.get).map(_.conf).getOrElse(new SparkConf())
    new SocketAuthHelper(conf)
  }

  def getWorkerBroadcasts(worker: Socket): mutable.Set[Long] = {
    synchronized {
      workerBroadcasts.getOrElseUpdate(worker, new mutable.HashSet[Long]())
    }
  }

  /**
   * Return an RDD of values from an RDD of (Long, Array[Byte]), with preservePartitions=true
   *
   * This is useful for PySpark to have the partitioner after partitionBy()
   */
  def valueOfPair(pair: JavaPairRDD[Long, Array[Byte]]): JavaRDD[Array[Byte]] = {
    pair.rdd.mapPartitions(it => it.map(_._2), true)
  }

  /**
   * Adapter for calling SparkContext#runJob from Python.
   *
   * This method will serve an iterator of an array that contains all elements in the RDD
   * (effectively a collect()), but allows you to run on a certain subset of partitions,
   * or to enable local execution.
   *
   * @return 3-tuple (as a Java array) with the port number of a local socket which serves the
   *         data collected from this job, the secret for authentication, and a socket auth
   *         server object that can be used to join the JVM serving thread in Python.
   */
  def runJob(
      sc: SparkContext,
      rdd: JavaRDD[Array[Byte]],
      partitions: JArrayList[Int]): Array[Any] = {
    type ByteArray = Array[Byte]
    type UnrolledPartition = Array[ByteArray]
    val allPartitions: Array[UnrolledPartition] =
      sc.runJob(rdd, (x: Iterator[ByteArray]) => x.toArray, partitions.asScala.toSeq)
    val flattenedPartition: UnrolledPartition = Array.concat(allPartitions: _*)
    serveIterator(flattenedPartition.iterator,
      s"serve RDD ${rdd.id} with partitions ${partitions.asScala.mkString(",")}")
  }

  /**
   * A helper function to collect an RDD as an iterator, then serve it via socket.
   *
   * @return 3-tuple (as a Java array) with the port number of a local socket which serves the
   *         data collected from this job, the secret for authentication, and a socket auth
   *         server object that can be used to join the JVM serving thread in Python.
   */
  def collectAndServe[T](rdd: RDD[T]): Array[Any] = {
    serveIterator(rdd.collect().iterator, s"serve RDD ${rdd.id}")
  }

  /**
   * A helper function to collect an RDD as an iterator, then serve it via socket.
   * This method is similar with `PythonRDD.collectAndServe`, but user can specify job group id,
   * job description, and interruptOnCancel option.
   */
  def collectAndServeWithJobGroup[T](
      rdd: RDD[T],
      groupId: String,
      description: String,
      interruptOnCancel: Boolean): Array[Any] = {
    val sc = rdd.sparkContext
    sc.setJobGroup(groupId, description, interruptOnCancel)
    serveIterator(rdd.collect().iterator, s"serve RDD ${rdd.id}")
  }

  /**
   * A helper function to create a local RDD iterator and serve it via socket. Partitions are
   * are collected as separate jobs, by order of index. Partition data is first requested by a
   * non-zero integer to start a collection job. The response is prefaced by an integer with 1
   * meaning partition data will be served, 0 meaning the local iterator has been consumed,
   * and -1 meaning an error occurred during collection. This function is used by
   * pyspark.rdd._local_iterator_from_socket().
   *
   * @return 3-tuple (as a Java array) with the port number of a local socket which serves the
   *         data collected from this job, the secret for authentication, and a socket auth
   *         server object that can be used to join the JVM serving thread in Python.
   */
  def toLocalIteratorAndServe[T](rdd: RDD[T], prefetchPartitions: Boolean = false): Array[Any] = {
    val handleFunc = (sock: Socket) => {
      val out = new DataOutputStream(sock.getOutputStream)
      val in = new DataInputStream(sock.getInputStream)
      Utils.tryWithSafeFinallyAndFailureCallbacks(block = {
        // Collects a partition on each iteration
        val collectPartitionIter = rdd.partitions.indices.iterator.map { i =>
          var result: Array[Any] = null
          rdd.sparkContext.submitJob(
            rdd,
            (iter: Iterator[Any]) => iter.toArray,
            Seq(i), // The partition we are evaluating
            (_, res: Array[Any]) => result = res,
            result)
        }
        val prefetchIter = collectPartitionIter.buffered

        // Write data until iteration is complete, client stops iteration, or error occurs
        var complete = false
        while (!complete) {

          // Read request for data, value of zero will stop iteration or non-zero to continue
          if (in.readInt() == 0) {
            complete = true
          } else if (prefetchIter.hasNext) {

            // Client requested more data, attempt to collect the next partition
            val partitionFuture = prefetchIter.next()
            // Cause the next job to be submitted if prefetchPartitions is enabled.
            if (prefetchPartitions) {
              prefetchIter.headOption
            }
            val partitionArray = ThreadUtils.awaitResult(partitionFuture, Duration.Inf)

            // Send response there is a partition to read
            out.writeInt(1)

            // Write the next object and signal end of data for this iteration
            writeIteratorToStream(partitionArray.iterator, out)
            out.writeInt(SpecialLengths.END_OF_DATA_SECTION)
            out.flush()
          } else {
            // Send response there are no more partitions to read and close
            out.writeInt(0)
            complete = true
          }
        }
      })(catchBlock = {
        // Send response that an error occurred, original exception is re-thrown
        out.writeInt(-1)
      }, finallyBlock = {
        out.close()
        in.close()
      })
    }

    val server = new SocketFuncServer(authHelper, "serve toLocalIterator", handleFunc)
    Array(server.port, server.secret, server)
  }

  def readRDDFromFile(
      sc: JavaSparkContext,
      filename: String,
      parallelism: Int): JavaRDD[Array[Byte]] = {
    JavaRDD.readRDDFromFile(sc, filename, parallelism)
  }

  def readRDDFromInputStream(
      sc: SparkContext,
      in: InputStream,
      parallelism: Int): JavaRDD[Array[Byte]] = {
    JavaRDD.readRDDFromInputStream(sc, in, parallelism)
  }

  def setupBroadcast(path: String): PythonBroadcast = {
    new PythonBroadcast(path)
  }

  def writeIteratorToStream[T](iter: Iterator[T], dataOut: DataOutputStream): Unit = {

    def write(obj: Any): Unit = obj match {
      case null =>
        dataOut.writeInt(SpecialLengths.NULL)
      case arr: Array[Byte] =>
        dataOut.writeInt(arr.length)
        dataOut.write(arr)
      case str: String =>
        writeUTF(str, dataOut)
      case stream: PortableDataStream =>
        write(stream.toArray())
      case (key, value) =>
        write(key)
        write(value)
      case other =>
        throw new SparkException("Unexpected element type " + other.getClass)
    }

    iter.foreach(write)
  }

  /**
   * Create an RDD from a path using [[org.apache.hadoop.mapred.SequenceFileInputFormat]],
   * key and value class.
   * A key and/or value converter class can optionally be passed in
   * (see [[org.apache.spark.api.python.Converter]])
   */
  def sequenceFile[K, V](
      sc: JavaSparkContext,
      path: String,
      keyClassMaybeNull: String,
      valueClassMaybeNull: String,
      keyConverterClass: String,
      valueConverterClass: String,
      minSplits: Int,
      batchSize: Int): JavaRDD[Array[Byte]] = {
    val keyClass = Option(keyClassMaybeNull).getOrElse("org.apache.hadoop.io.Text")
    val valueClass = Option(valueClassMaybeNull).getOrElse("org.apache.hadoop.io.Text")
    val kc = Utils.classForName[K](keyClass)
    val vc = Utils.classForName[V](valueClass)
    val rdd = sc.sc.sequenceFile[K, V](path, kc, vc, minSplits)
    val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(sc.hadoopConfiguration()))
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new WritableToJavaConverter(confBroadcasted))
    JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
  }

  /**
   * Create an RDD from a file path, using an arbitrary [[org.apache.hadoop.mapreduce.InputFormat]],
   * key and value class.
   * A key and/or value converter class can optionally be passed in
   * (see [[org.apache.spark.api.python.Converter]])
   */
  def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]](
      sc: JavaSparkContext,
      path: String,
      inputFormatClass: String,
      keyClass: String,
      valueClass: String,
      keyConverterClass: String,
      valueConverterClass: String,
      confAsMap: java.util.HashMap[String, String],
      batchSize: Int): JavaRDD[Array[Byte]] = {
    val mergedConf = getMergedConf(confAsMap, sc.hadoopConfiguration())
    val rdd =
      newAPIHadoopRDDFromClassNames[K, V, F](sc,
        Some(path), inputFormatClass, keyClass, valueClass, mergedConf)
    val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(mergedConf))
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new WritableToJavaConverter(confBroadcasted))
    JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
  }

  /**
   * Create an RDD from a [[org.apache.hadoop.conf.Configuration]] converted from a map that is
   * passed in from Python, using an arbitrary [[org.apache.hadoop.mapreduce.InputFormat]],
   * key and value class.
   * A key and/or value converter class can optionally be passed in
   * (see [[org.apache.spark.api.python.Converter]])
   */
  def newAPIHadoopRDD[K, V, F <: NewInputFormat[K, V]](
      sc: JavaSparkContext,
      inputFormatClass: String,
      keyClass: String,
      valueClass: String,
      keyConverterClass: String,
      valueConverterClass: String,
      confAsMap: java.util.HashMap[String, String],
      batchSize: Int): JavaRDD[Array[Byte]] = {
    val conf = getMergedConf(confAsMap, sc.hadoopConfiguration())
    val rdd =
      newAPIHadoopRDDFromClassNames[K, V, F](sc,
        None, inputFormatClass, keyClass, valueClass, conf)
    val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(conf))
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new WritableToJavaConverter(confBroadcasted))
    JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
  }

  private def newAPIHadoopRDDFromClassNames[K, V, F <: NewInputFormat[K, V]](
      sc: JavaSparkContext,
      path: Option[String] = None,
      inputFormatClass: String,
      keyClass: String,
      valueClass: String,
      conf: Configuration): RDD[(K, V)] = {
    val kc = Utils.classForName[K](keyClass)
    val vc = Utils.classForName[V](valueClass)
    val fc = Utils.classForName[F](inputFormatClass)
    if (path.isDefined) {
      sc.sc.newAPIHadoopFile[K, V, F](path.get, fc, kc, vc, conf)
    } else {
      sc.sc.newAPIHadoopRDD[K, V, F](conf, fc, kc, vc)
    }
  }

  /**
   * Create an RDD from a file path, using an arbitrary [[org.apache.hadoop.mapred.InputFormat]],
   * key and value class.
   * A key and/or value converter class can optionally be passed in
   * (see [[org.apache.spark.api.python.Converter]])
   */
  def hadoopFile[K, V, F <: InputFormat[K, V]](
      sc: JavaSparkContext,
      path: String,
      inputFormatClass: String,
      keyClass: String,
      valueClass: String,
      keyConverterClass: String,
      valueConverterClass: String,
      confAsMap: java.util.HashMap[String, String],
      batchSize: Int): JavaRDD[Array[Byte]] = {
    val mergedConf = getMergedConf(confAsMap, sc.hadoopConfiguration())
    val rdd =
      hadoopRDDFromClassNames[K, V, F](sc,
        Some(path), inputFormatClass, keyClass, valueClass, mergedConf)
    val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(mergedConf))
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new WritableToJavaConverter(confBroadcasted))
    JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
  }

  /**
   * Create an RDD from a [[org.apache.hadoop.conf.Configuration]] converted from a map
   * that is passed in from Python, using an arbitrary [[org.apache.hadoop.mapred.InputFormat]],
   * key and value class
   * A key and/or value converter class can optionally be passed in
   * (see [[org.apache.spark.api.python.Converter]])
   */
  def hadoopRDD[K, V, F <: InputFormat[K, V]](
      sc: JavaSparkContext,
      inputFormatClass: String,
      keyClass: String,
      valueClass: String,
      keyConverterClass: String,
      valueConverterClass: String,
      confAsMap: java.util.HashMap[String, String],
      batchSize: Int): JavaRDD[Array[Byte]] = {
    val conf = getMergedConf(confAsMap, sc.hadoopConfiguration())
    val rdd =
      hadoopRDDFromClassNames[K, V, F](sc,
        None, inputFormatClass, keyClass, valueClass, conf)
    val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(conf))
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new WritableToJavaConverter(confBroadcasted))
    JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
  }

  private def hadoopRDDFromClassNames[K, V, F <: InputFormat[K, V]](
      sc: JavaSparkContext,
      path: Option[String] = None,
      inputFormatClass: String,
      keyClass: String,
      valueClass: String,
      conf: Configuration) = {
    val kc = Utils.classForName[K](keyClass)
    val vc = Utils.classForName[V](valueClass)
    val fc = Utils.classForName[F](inputFormatClass)
    if (path.isDefined) {
      sc.sc.hadoopFile(path.get, fc, kc, vc)
    } else {
      sc.sc.hadoopRDD(new JobConf(conf), fc, kc, vc)
    }
  }

  def writeUTF(str: String, dataOut: DataOutputStream): Unit = {
    val bytes = str.getBytes(StandardCharsets.UTF_8)
    dataOut.writeInt(bytes.length)
    dataOut.write(bytes)
  }

  /**
   * Create a socket server and a background thread to serve the data in `items`,
   *
   * The socket server can only accept one connection, or close if no connection
   * in 15 seconds.
   *
   * Once a connection comes in, it tries to serialize all the data in `items`
   * and send them into this connection.
   *
   * The thread will terminate after all the data are sent or any exceptions happen.
   *
   * @return 3-tuple (as a Java array) with the port number of a local socket which serves the
   *         data collected from this job, the secret for authentication, and a socket auth
   *         server object that can be used to join the JVM serving thread in Python.
   */
  def serveIterator(items: Iterator[_], threadName: String): Array[Any] = {
    serveToStream(threadName) { out =>
      writeIteratorToStream(items, new DataOutputStream(out))
    }
  }

  /**
   * Create a socket server and background thread to execute the writeFunc
   * with the given OutputStream.
   *
   * The socket server can only accept one connection, or close if no connection
   * in 15 seconds.
   *
   * Once a connection comes in, it will execute the block of code and pass in
   * the socket output stream.
   *
   * The thread will terminate after the block of code is executed or any
   * exceptions happen.
   *
   * @return 3-tuple (as a Java array) with the port number of a local socket which serves the
   *         data collected from this job, the secret for authentication, and a socket auth
   *         server object that can be used to join the JVM serving thread in Python.
   */
  private[spark] def serveToStream(
      threadName: String)(writeFunc: OutputStream => Unit): Array[Any] = {
    SocketAuthServer.serveToStream(threadName, authHelper)(writeFunc)
  }

  private def getMergedConf(confAsMap: java.util.HashMap[String, String],
      baseConf: Configuration): Configuration = {
    val conf = PythonHadoopUtil.mapToConf(confAsMap)
    PythonHadoopUtil.mergeConfs(baseConf, conf)
  }

  private def inferKeyValueTypes[K, V, KK, VV](rdd: RDD[(K, V)], keyConverterClass: String = null,
      valueConverterClass: String = null): (Class[_ <: KK], Class[_ <: VV]) = {
    // Peek at an element to figure out key/value types. Since Writables are not serializable,
    // we cannot call first() on the converted RDD. Instead, we call first() on the original RDD
    // and then convert locally.
    val (key, value) = rdd.first()
    val (kc, vc) = getKeyValueConverters[K, V, KK, VV](
      keyConverterClass, valueConverterClass, new JavaToWritableConverter)
    (kc.convert(key).getClass, vc.convert(value).getClass)
  }

  private def getKeyValueTypes[K, V](keyClass: String, valueClass: String):
      Option[(Class[K], Class[V])] = {
    for {
      k <- Option(keyClass)
      v <- Option(valueClass)
    } yield (Utils.classForName(k), Utils.classForName(v))
  }

  private def getKeyValueConverters[K, V, KK, VV](
      keyConverterClass: String,
      valueConverterClass: String,
      defaultConverter: Converter[_, _]): (Converter[K, KK], Converter[V, VV]) = {
    val keyConverter = Converter.getInstance(Option(keyConverterClass),
      defaultConverter.asInstanceOf[Converter[K, KK]])
    val valueConverter = Converter.getInstance(Option(valueConverterClass),
      defaultConverter.asInstanceOf[Converter[V, VV]])
    (keyConverter, valueConverter)
  }

  /**
   * Convert an RDD of key-value pairs from internal types to serializable types suitable for
   * output, or vice versa.
   */
  private def convertRDD[K, V](rdd: RDD[(K, V)],
                               keyConverterClass: String,
                               valueConverterClass: String,
                               defaultConverter: Converter[Any, Any]): RDD[(Any, Any)] = {
    val (kc, vc) = getKeyValueConverters[K, V, Any, Any](keyConverterClass, valueConverterClass,
      defaultConverter)
    PythonHadoopUtil.convertRDD(rdd, kc, vc)
  }

  /**
   * Output a Python RDD of key-value pairs as a Hadoop SequenceFile using the Writable types
   * we convert from the RDD's key and value types. Note that keys and values can't be
   * [[org.apache.hadoop.io.Writable]] types already, since Writables are not Java
   * `Serializable` and we can't peek at them. The `path` can be on any Hadoop file system.
   */
  def saveAsSequenceFile[C <: CompressionCodec](
      pyRDD: JavaRDD[Array[Byte]],
      batchSerialized: Boolean,
      path: String,
      compressionCodecClass: String): Unit = {
    saveAsHadoopFile(
      pyRDD, batchSerialized, path, "org.apache.hadoop.mapred.SequenceFileOutputFormat",
      null, null, null, null, new java.util.HashMap(), compressionCodecClass)
  }

  /**
   * Output a Python RDD of key-value pairs to any Hadoop file system, using old Hadoop
   * `OutputFormat` in mapred package. Keys and values are converted to suitable output
   * types using either user specified converters or, if not specified,
   * [[org.apache.spark.api.python.JavaToWritableConverter]]. Post-conversion types
   * `keyClass` and `valueClass` are automatically inferred if not specified. The passed-in
   * `confAsMap` is merged with the default Hadoop conf associated with the SparkContext of
   * this RDD.
   */
  def saveAsHadoopFile[F <: OutputFormat[_, _], C <: CompressionCodec](
      pyRDD: JavaRDD[Array[Byte]],
      batchSerialized: Boolean,
      path: String,
      outputFormatClass: String,
      keyClass: String,
      valueClass: String,
      keyConverterClass: String,
      valueConverterClass: String,
      confAsMap: java.util.HashMap[String, String],
      compressionCodecClass: String): Unit = {
    val rdd = SerDeUtil.pythonToPairRDD(pyRDD, batchSerialized)
    val (kc, vc) = getKeyValueTypes(keyClass, valueClass).getOrElse(
      inferKeyValueTypes(rdd, keyConverterClass, valueConverterClass))
    val mergedConf = getMergedConf(confAsMap, pyRDD.context.hadoopConfiguration)
    val codec = Option(compressionCodecClass).map(Utils.classForName(_).asInstanceOf[Class[C]])
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new JavaToWritableConverter)
    val fc = Utils.classForName[F](outputFormatClass)
    converted.saveAsHadoopFile(path, kc, vc, fc, new JobConf(mergedConf), codec = codec)
  }

  /**
   * Output a Python RDD of key-value pairs to any Hadoop file system, using new Hadoop
   * `OutputFormat` in mapreduce package. Keys and values are converted to suitable output
   * types using either user specified converters or, if not specified,
   * [[org.apache.spark.api.python.JavaToWritableConverter]]. Post-conversion types
   * `keyClass` and `valueClass` are automatically inferred if not specified. The passed-in
   * `confAsMap` is merged with the default Hadoop conf associated with the SparkContext of
   * this RDD.
   */
  def saveAsNewAPIHadoopFile[F <: NewOutputFormat[_, _]](
      pyRDD: JavaRDD[Array[Byte]],
      batchSerialized: Boolean,
      path: String,
      outputFormatClass: String,
      keyClass: String,
      valueClass: String,
      keyConverterClass: String,
      valueConverterClass: String,
      confAsMap: java.util.HashMap[String, String]): Unit = {
    val rdd = SerDeUtil.pythonToPairRDD(pyRDD, batchSerialized)
    val (kc, vc) = getKeyValueTypes(keyClass, valueClass).getOrElse(
      inferKeyValueTypes(rdd, keyConverterClass, valueConverterClass))
    val mergedConf = getMergedConf(confAsMap, pyRDD.context.hadoopConfiguration)
    val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
      new JavaToWritableConverter)
    val fc = Utils.classForName(outputFormatClass).asInstanceOf[Class[F]]
    converted.saveAsNewAPIHadoopFile(path, kc, vc, fc, mergedConf)
  }

  /**
   * Output a Python RDD of key-value pairs to any Hadoop file system, using a Hadoop conf
   * converted from the passed-in `confAsMap`. The conf should set relevant output params (
   * e.g., output path, output format, etc), in the same way as it would be configured for
   * a Hadoop MapReduce job. Both old and new Hadoop OutputFormat APIs are supported
   * (mapred vs. mapreduce). Keys/values are converted for output using either user specified
   * converters or, by default, [[org.apache.spark.api.python.JavaToWritableConverter]].
   */
  def saveAsHadoopDataset(
      pyRDD: JavaRDD[Array[Byte]],
      batchSerialized: Boolean,
      confAsMap: java.util.HashMap[String, String],
      keyConverterClass: String,
      valueConverterClass: String,
      useNewAPI: Boolean): Unit = {
    val conf = getMergedConf(confAsMap, pyRDD.context.hadoopConfiguration)
    val converted = convertRDD(SerDeUtil.pythonToPairRDD(pyRDD, batchSerialized),
      keyConverterClass, valueConverterClass, new JavaToWritableConverter)
    if (useNewAPI) {
      converted.saveAsNewAPIHadoopDataset(conf)
    } else {
      converted.saveAsHadoopDataset(new JobConf(conf))
    }
  }
}

private
class BytesToString extends org.apache.spark.api.java.function.Function[Array[Byte], String] {
  override def call(arr: Array[Byte]) : String = new String(arr, StandardCharsets.UTF_8)
}

/**
 * Internal class that acts as an `AccumulatorV2` for Python accumulators. Inside, it
 * collects a list of pickled strings that we pass to Python through a socket.
 */
private[spark] class PythonAccumulatorV2(
    @transient private val serverHost: String,
    private val serverPort: Int,
    private val secretToken: String)
  extends CollectionAccumulator[Array[Byte]] with Logging {

  Utils.checkHost(serverHost)

  val bufferSize = SparkEnv.get.conf.get(BUFFER_SIZE)

  /**
   * We try to reuse a single Socket to transfer accumulator updates, as they are all added
   * by the DAGScheduler's single-threaded RpcEndpoint anyway.
   */
  @transient private var socket: Socket = _

  private def openSocket(): Socket = synchronized {
    if (socket == null || socket.isClosed) {
      socket = new Socket(serverHost, serverPort)
      logInfo(s"Connected to AccumulatorServer at host: $serverHost port: $serverPort")
      // send the secret just for the initial authentication when opening a new connection
      socket.getOutputStream.write(secretToken.getBytes(StandardCharsets.UTF_8))
    }
    socket
  }

  // Need to override so the types match with PythonFunction
  override def copyAndReset(): PythonAccumulatorV2 = {
    new PythonAccumulatorV2(serverHost, serverPort, secretToken)
  }

  override def merge(other: AccumulatorV2[Array[Byte], JList[Array[Byte]]]): Unit = synchronized {
    val otherPythonAccumulator = other.asInstanceOf[PythonAccumulatorV2]
    // This conditional isn't strictly speaking needed - merging only currently happens on the
    // driver program - but that isn't guaranteed so incase this changes.
    if (serverHost == null) {
      // We are on the worker
      super.merge(otherPythonAccumulator)
    } else {
      // This happens on the master, where we pass the updates to Python through a socket
      val socket = openSocket()
      val in = socket.getInputStream
      val out = new DataOutputStream(new BufferedOutputStream(socket.getOutputStream, bufferSize))
      val values = other.value
      out.writeInt(values.size)
      for (array <- values.asScala) {
        out.writeInt(array.length)
        out.write(array)
      }
      out.flush()
      // Wait for a byte from the Python side as an acknowledgement
      val byteRead = in.read()
      if (byteRead == -1) {
        throw new SparkException("EOF reached before Python server acknowledged")
      }
    }
  }
}

private[spark] class PythonBroadcast(@transient var path: String) extends Serializable
    with Logging {

  // id of the Broadcast variable which wrapped this PythonBroadcast
  private var broadcastId: Long = _
  private var encryptionServer: SocketAuthServer[Unit] = null
  private var decryptionServer: SocketAuthServer[Unit] = null

  /**
   * Read data from disks, then copy it to `out`
   */
  private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
    out.writeLong(broadcastId)
    val in = new FileInputStream(new File(path))
    try {
      Utils.copyStream(in, out)
    } finally {
      in.close()
    }
  }

  /**
   * Write data into disk and map it to a broadcast block.
   */
  private def readObject(in: ObjectInputStream): Unit = {
    broadcastId = in.readLong()
    val blockId = BroadcastBlockId(broadcastId, "python")
    val blockManager = SparkEnv.get.blockManager
    val diskBlockManager = blockManager.diskBlockManager
    if (!diskBlockManager.containsBlock(blockId)) {
      Utils.tryOrIOException {
        val dir = new File(Utils.getLocalDir(SparkEnv.get.conf))
        val file = File.createTempFile("broadcast", "", dir)
        val out = new FileOutputStream(file)
        Utils.tryWithSafeFinally {
          val size = Utils.copyStream(in, out)
          val ct = implicitly[ClassTag[Object]]
          // SPARK-28486: map broadcast file to a broadcast block, so that it could be
          // cleared by unpersist/destroy rather than gc(previously).
          val blockStoreUpdater = blockManager.
            TempFileBasedBlockStoreUpdater(blockId, StorageLevel.DISK_ONLY, ct, file, size)
          blockStoreUpdater.save()
        } {
          out.close()
        }
      }
    }
    path = diskBlockManager.getFile(blockId).getAbsolutePath
  }

  def setBroadcastId(bid: Long): Unit = {
    this.broadcastId = bid
  }

  def setupEncryptionServer(): Array[Any] = {
    encryptionServer = new SocketAuthServer[Unit]("broadcast-encrypt-server") {
      override def handleConnection(sock: Socket): Unit = {
        val env = SparkEnv.get
        val in = sock.getInputStream()
        val abspath = new File(path).getAbsolutePath
        val out = env.serializerManager.wrapForEncryption(new FileOutputStream(abspath))
        DechunkedInputStream.dechunkAndCopyToOutput(in, out)
      }
    }
    Array(encryptionServer.port, encryptionServer.secret)
  }

  def setupDecryptionServer(): Array[Any] = {
    decryptionServer = new SocketAuthServer[Unit]("broadcast-decrypt-server-for-driver") {
      override def handleConnection(sock: Socket): Unit = {
        val out = new DataOutputStream(new BufferedOutputStream(sock.getOutputStream()))
        Utils.tryWithSafeFinally {
          val in = SparkEnv.get.serializerManager.wrapForEncryption(new FileInputStream(path))
          Utils.tryWithSafeFinally {
            Utils.copyStream(in, out, false)
          } {
            in.close()
          }
          out.flush()
        } {
          JavaUtils.closeQuietly(out)
        }
      }
    }
    Array(decryptionServer.port, decryptionServer.secret)
  }

  def waitTillBroadcastDataSent(): Unit = decryptionServer.getResult()

  def waitTillDataReceived(): Unit = encryptionServer.getResult()
}

/**
 * The inverse of pyspark's ChunkedStream for sending data of unknown size.
 *
 * We might be serializing a really large object from python -- we don't want
 * python to buffer the whole thing in memory, nor can it write to a file,
 * so we don't know the length in advance.  So python writes it in chunks, each chunk
 * preceded by a length, till we get a "length" of -1 which serves as EOF.
 *
 * Tested from python tests.
 */
private[spark] class DechunkedInputStream(wrapped: InputStream) extends InputStream with Logging {
  private val din = new DataInputStream(wrapped)
  private var remainingInChunk = din.readInt()

  override def read(): Int = {
    val into = new Array[Byte](1)
    val n = read(into, 0, 1)
    if (n == -1) {
      -1
    } else {
      // if you just cast a byte to an int, then anything > 127 is negative, which is interpreted
      // as an EOF
      val b = into(0)
      if (b < 0) {
        256 + b
      } else {
        b
      }
    }
  }

  override def read(dest: Array[Byte], off: Int, len: Int): Int = {
    if (remainingInChunk == -1) {
      return -1
    }
    var destSpace = len
    var destPos = off
    while (destSpace > 0 && remainingInChunk != -1) {
      val toCopy = math.min(remainingInChunk, destSpace)
      val read = din.read(dest, destPos, toCopy)
      destPos += read
      destSpace -= read
      remainingInChunk -= read
      if (remainingInChunk == 0) {
        remainingInChunk = din.readInt()
      }
    }
    assert(destSpace == 0 || remainingInChunk == -1)
    destPos - off
  }

  override def close(): Unit = wrapped.close()
}

private[spark] object DechunkedInputStream {

  /**
   * Dechunks the input, copies to output, and closes both input and the output safely.
   */
  def dechunkAndCopyToOutput(chunked: InputStream, out: OutputStream): Unit = {
    val dechunked = new DechunkedInputStream(chunked)
    Utils.tryWithSafeFinally {
      Utils.copyStream(dechunked, out)
    } {
      JavaUtils.closeQuietly(out)
      JavaUtils.closeQuietly(dechunked)
    }
  }
}

/**
 * Sends decrypted broadcast data to python worker.  See [[PythonRunner]] for entire protocol.
 */
private[spark] class EncryptedPythonBroadcastServer(
    val env: SparkEnv,
    val idsAndFiles: Seq[(Long, String)])
    extends SocketAuthServer[Unit]("broadcast-decrypt-server") with Logging {

  override def handleConnection(socket: Socket): Unit = {
    val out = new DataOutputStream(new BufferedOutputStream(socket.getOutputStream()))
    var socketIn: InputStream = null
    // send the broadcast id, then the decrypted data.  We don't need to send the length, the
    // the python pickle module just needs a stream.
    Utils.tryWithSafeFinally {
      (idsAndFiles).foreach { case (id, path) =>
        out.writeLong(id)
        val in = env.serializerManager.wrapForEncryption(new FileInputStream(path))
        Utils.tryWithSafeFinally {
          Utils.copyStream(in, out, false)
        } {
          in.close()
        }
      }
      logTrace("waiting for python to accept broadcast data over socket")
      out.flush()
      socketIn = socket.getInputStream()
      socketIn.read()
      logTrace("done serving broadcast data")
    } {
      JavaUtils.closeQuietly(socketIn)
      JavaUtils.closeQuietly(out)
    }
  }

  def waitTillBroadcastDataSent(): Unit = {
    getResult()
  }
}

/**
 * Helper for making RDD[Array[Byte]] from some python data, by reading the data from python
 * over a socket.  This is used in preference to writing data to a file when encryption is enabled.
 */
private[spark] abstract class PythonRDDServer
    extends SocketAuthServer[JavaRDD[Array[Byte]]]("pyspark-parallelize-server") {

  def handleConnection(sock: Socket): JavaRDD[Array[Byte]] = {
    val in = sock.getInputStream()
    val dechunkedInput: InputStream = new DechunkedInputStream(in)
    streamToRDD(dechunkedInput)
  }

  protected def streamToRDD(input: InputStream): RDD[Array[Byte]]

}

private[spark] class PythonParallelizeServer(sc: SparkContext, parallelism: Int)
    extends PythonRDDServer {

  override protected def streamToRDD(input: InputStream): RDD[Array[Byte]] = {
    PythonRDD.readRDDFromInputStream(sc, input, parallelism)
  }
}

相关信息

spark 源码目录

相关文章

spark Py4JServer 源码

spark PythonGatewayServer 源码

spark PythonHadoopUtil 源码

spark PythonPartitioner 源码

spark PythonRunner 源码

spark PythonUtils 源码

spark PythonWorkerFactory 源码

spark SerDeUtil 源码

spark WriteInputFormatTestDataGenerator 源码

0  赞