spark PythonRDD 源码
spark PythonRDD 代码
文件路径:/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.api.python
import java.io._
import java.net._
import java.nio.charset.StandardCharsets
import java.util.{ArrayList => JArrayList, List => JList, Map => JMap}
import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.concurrent.duration.Duration
import scala.reflect.ClassTag
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.compress.CompressionCodec
import org.apache.hadoop.mapred.{InputFormat, JobConf, OutputFormat}
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat, OutputFormat => NewOutputFormat}
import org.apache.spark._
import org.apache.spark.api.java.{JavaPairRDD, JavaRDD, JavaSparkContext}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.input.PortableDataStream
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.BUFFER_SIZE
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.security.{SocketAuthHelper, SocketAuthServer, SocketFuncServer}
import org.apache.spark.storage.{BroadcastBlockId, StorageLevel}
import org.apache.spark.util._
private[spark] class PythonRDD(
parent: RDD[_],
func: PythonFunction,
preservePartitioning: Boolean,
isFromBarrier: Boolean = false)
extends RDD[Array[Byte]](parent) {
override def getPartitions: Array[Partition] = firstParent.partitions
override val partitioner: Option[Partitioner] = {
if (preservePartitioning) firstParent.partitioner else None
}
val asJavaRDD: JavaRDD[Array[Byte]] = JavaRDD.fromRDD(this)
override def compute(split: Partition, context: TaskContext): Iterator[Array[Byte]] = {
val runner = PythonRunner(func)
runner.compute(firstParent.iterator(split, context), split.index, context)
}
@transient protected lazy override val isBarrier_ : Boolean =
isFromBarrier || dependencies.exists(_.rdd.isBarrier())
}
/**
* A wrapper for a Python function, contains all necessary context to run the function in Python
* runner.
*/
private[spark] trait PythonFunction {
def command: Seq[Byte]
def envVars: JMap[String, String]
def pythonIncludes: JList[String]
def pythonExec: String
def pythonVer: String
def broadcastVars: JList[Broadcast[PythonBroadcast]]
def accumulator: PythonAccumulatorV2
}
/**
* A simple wrapper for a Python function created via pyspark.
*/
private[spark] case class SimplePythonFunction(
command: Seq[Byte],
envVars: JMap[String, String],
pythonIncludes: JList[String],
pythonExec: String,
pythonVer: String,
broadcastVars: JList[Broadcast[PythonBroadcast]],
accumulator: PythonAccumulatorV2) extends PythonFunction {
def this(
command: Array[Byte],
envVars: JMap[String, String],
pythonIncludes: JList[String],
pythonExec: String,
pythonVer: String,
broadcastVars: JList[Broadcast[PythonBroadcast]],
accumulator: PythonAccumulatorV2) = {
this(command.toSeq, envVars, pythonIncludes, pythonExec, pythonVer, broadcastVars, accumulator)
}
}
/**
* A wrapper for chained Python functions (from bottom to top).
* @param funcs
*/
private[spark] case class ChainedPythonFunctions(funcs: Seq[PythonFunction])
/** Thrown for exceptions in user Python code. */
private[spark] class PythonException(msg: String, cause: Throwable)
extends RuntimeException(msg, cause)
/**
* Form an RDD[(Array[Byte], Array[Byte])] from key-value pairs returned from Python.
* This is used by PySpark's shuffle operations.
*/
private class PairwiseRDD(prev: RDD[Array[Byte]]) extends RDD[(Long, Array[Byte])](prev) {
override def getPartitions: Array[Partition] = prev.partitions
override val partitioner: Option[Partitioner] = prev.partitioner
override def compute(split: Partition, context: TaskContext): Iterator[(Long, Array[Byte])] =
prev.iterator(split, context).grouped(2).map {
case Seq(a, b) => (Utils.deserializeLongValue(a), b)
case x => throw new SparkException("PairwiseRDD: unexpected value: " + x)
}
val asJavaPairRDD : JavaPairRDD[Long, Array[Byte]] = JavaPairRDD.fromRDD(this)
}
private[spark] object PythonRDD extends Logging {
// remember the broadcasts sent to each worker
private val workerBroadcasts = new mutable.WeakHashMap[Socket, mutable.Set[Long]]()
// Authentication helper used when serving iterator data.
private lazy val authHelper = {
val conf = Option(SparkEnv.get).map(_.conf).getOrElse(new SparkConf())
new SocketAuthHelper(conf)
}
def getWorkerBroadcasts(worker: Socket): mutable.Set[Long] = {
synchronized {
workerBroadcasts.getOrElseUpdate(worker, new mutable.HashSet[Long]())
}
}
/**
* Return an RDD of values from an RDD of (Long, Array[Byte]), with preservePartitions=true
*
* This is useful for PySpark to have the partitioner after partitionBy()
*/
def valueOfPair(pair: JavaPairRDD[Long, Array[Byte]]): JavaRDD[Array[Byte]] = {
pair.rdd.mapPartitions(it => it.map(_._2), true)
}
/**
* Adapter for calling SparkContext#runJob from Python.
*
* This method will serve an iterator of an array that contains all elements in the RDD
* (effectively a collect()), but allows you to run on a certain subset of partitions,
* or to enable local execution.
*
* @return 3-tuple (as a Java array) with the port number of a local socket which serves the
* data collected from this job, the secret for authentication, and a socket auth
* server object that can be used to join the JVM serving thread in Python.
*/
def runJob(
sc: SparkContext,
rdd: JavaRDD[Array[Byte]],
partitions: JArrayList[Int]): Array[Any] = {
type ByteArray = Array[Byte]
type UnrolledPartition = Array[ByteArray]
val allPartitions: Array[UnrolledPartition] =
sc.runJob(rdd, (x: Iterator[ByteArray]) => x.toArray, partitions.asScala.toSeq)
val flattenedPartition: UnrolledPartition = Array.concat(allPartitions: _*)
serveIterator(flattenedPartition.iterator,
s"serve RDD ${rdd.id} with partitions ${partitions.asScala.mkString(",")}")
}
/**
* A helper function to collect an RDD as an iterator, then serve it via socket.
*
* @return 3-tuple (as a Java array) with the port number of a local socket which serves the
* data collected from this job, the secret for authentication, and a socket auth
* server object that can be used to join the JVM serving thread in Python.
*/
def collectAndServe[T](rdd: RDD[T]): Array[Any] = {
serveIterator(rdd.collect().iterator, s"serve RDD ${rdd.id}")
}
/**
* A helper function to collect an RDD as an iterator, then serve it via socket.
* This method is similar with `PythonRDD.collectAndServe`, but user can specify job group id,
* job description, and interruptOnCancel option.
*/
def collectAndServeWithJobGroup[T](
rdd: RDD[T],
groupId: String,
description: String,
interruptOnCancel: Boolean): Array[Any] = {
val sc = rdd.sparkContext
sc.setJobGroup(groupId, description, interruptOnCancel)
serveIterator(rdd.collect().iterator, s"serve RDD ${rdd.id}")
}
/**
* A helper function to create a local RDD iterator and serve it via socket. Partitions are
* are collected as separate jobs, by order of index. Partition data is first requested by a
* non-zero integer to start a collection job. The response is prefaced by an integer with 1
* meaning partition data will be served, 0 meaning the local iterator has been consumed,
* and -1 meaning an error occurred during collection. This function is used by
* pyspark.rdd._local_iterator_from_socket().
*
* @return 3-tuple (as a Java array) with the port number of a local socket which serves the
* data collected from this job, the secret for authentication, and a socket auth
* server object that can be used to join the JVM serving thread in Python.
*/
def toLocalIteratorAndServe[T](rdd: RDD[T], prefetchPartitions: Boolean = false): Array[Any] = {
val handleFunc = (sock: Socket) => {
val out = new DataOutputStream(sock.getOutputStream)
val in = new DataInputStream(sock.getInputStream)
Utils.tryWithSafeFinallyAndFailureCallbacks(block = {
// Collects a partition on each iteration
val collectPartitionIter = rdd.partitions.indices.iterator.map { i =>
var result: Array[Any] = null
rdd.sparkContext.submitJob(
rdd,
(iter: Iterator[Any]) => iter.toArray,
Seq(i), // The partition we are evaluating
(_, res: Array[Any]) => result = res,
result)
}
val prefetchIter = collectPartitionIter.buffered
// Write data until iteration is complete, client stops iteration, or error occurs
var complete = false
while (!complete) {
// Read request for data, value of zero will stop iteration or non-zero to continue
if (in.readInt() == 0) {
complete = true
} else if (prefetchIter.hasNext) {
// Client requested more data, attempt to collect the next partition
val partitionFuture = prefetchIter.next()
// Cause the next job to be submitted if prefetchPartitions is enabled.
if (prefetchPartitions) {
prefetchIter.headOption
}
val partitionArray = ThreadUtils.awaitResult(partitionFuture, Duration.Inf)
// Send response there is a partition to read
out.writeInt(1)
// Write the next object and signal end of data for this iteration
writeIteratorToStream(partitionArray.iterator, out)
out.writeInt(SpecialLengths.END_OF_DATA_SECTION)
out.flush()
} else {
// Send response there are no more partitions to read and close
out.writeInt(0)
complete = true
}
}
})(catchBlock = {
// Send response that an error occurred, original exception is re-thrown
out.writeInt(-1)
}, finallyBlock = {
out.close()
in.close()
})
}
val server = new SocketFuncServer(authHelper, "serve toLocalIterator", handleFunc)
Array(server.port, server.secret, server)
}
def readRDDFromFile(
sc: JavaSparkContext,
filename: String,
parallelism: Int): JavaRDD[Array[Byte]] = {
JavaRDD.readRDDFromFile(sc, filename, parallelism)
}
def readRDDFromInputStream(
sc: SparkContext,
in: InputStream,
parallelism: Int): JavaRDD[Array[Byte]] = {
JavaRDD.readRDDFromInputStream(sc, in, parallelism)
}
def setupBroadcast(path: String): PythonBroadcast = {
new PythonBroadcast(path)
}
def writeIteratorToStream[T](iter: Iterator[T], dataOut: DataOutputStream): Unit = {
def write(obj: Any): Unit = obj match {
case null =>
dataOut.writeInt(SpecialLengths.NULL)
case arr: Array[Byte] =>
dataOut.writeInt(arr.length)
dataOut.write(arr)
case str: String =>
writeUTF(str, dataOut)
case stream: PortableDataStream =>
write(stream.toArray())
case (key, value) =>
write(key)
write(value)
case other =>
throw new SparkException("Unexpected element type " + other.getClass)
}
iter.foreach(write)
}
/**
* Create an RDD from a path using [[org.apache.hadoop.mapred.SequenceFileInputFormat]],
* key and value class.
* A key and/or value converter class can optionally be passed in
* (see [[org.apache.spark.api.python.Converter]])
*/
def sequenceFile[K, V](
sc: JavaSparkContext,
path: String,
keyClassMaybeNull: String,
valueClassMaybeNull: String,
keyConverterClass: String,
valueConverterClass: String,
minSplits: Int,
batchSize: Int): JavaRDD[Array[Byte]] = {
val keyClass = Option(keyClassMaybeNull).getOrElse("org.apache.hadoop.io.Text")
val valueClass = Option(valueClassMaybeNull).getOrElse("org.apache.hadoop.io.Text")
val kc = Utils.classForName[K](keyClass)
val vc = Utils.classForName[V](valueClass)
val rdd = sc.sc.sequenceFile[K, V](path, kc, vc, minSplits)
val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(sc.hadoopConfiguration()))
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new WritableToJavaConverter(confBroadcasted))
JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
}
/**
* Create an RDD from a file path, using an arbitrary [[org.apache.hadoop.mapreduce.InputFormat]],
* key and value class.
* A key and/or value converter class can optionally be passed in
* (see [[org.apache.spark.api.python.Converter]])
*/
def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]](
sc: JavaSparkContext,
path: String,
inputFormatClass: String,
keyClass: String,
valueClass: String,
keyConverterClass: String,
valueConverterClass: String,
confAsMap: java.util.HashMap[String, String],
batchSize: Int): JavaRDD[Array[Byte]] = {
val mergedConf = getMergedConf(confAsMap, sc.hadoopConfiguration())
val rdd =
newAPIHadoopRDDFromClassNames[K, V, F](sc,
Some(path), inputFormatClass, keyClass, valueClass, mergedConf)
val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(mergedConf))
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new WritableToJavaConverter(confBroadcasted))
JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
}
/**
* Create an RDD from a [[org.apache.hadoop.conf.Configuration]] converted from a map that is
* passed in from Python, using an arbitrary [[org.apache.hadoop.mapreduce.InputFormat]],
* key and value class.
* A key and/or value converter class can optionally be passed in
* (see [[org.apache.spark.api.python.Converter]])
*/
def newAPIHadoopRDD[K, V, F <: NewInputFormat[K, V]](
sc: JavaSparkContext,
inputFormatClass: String,
keyClass: String,
valueClass: String,
keyConverterClass: String,
valueConverterClass: String,
confAsMap: java.util.HashMap[String, String],
batchSize: Int): JavaRDD[Array[Byte]] = {
val conf = getMergedConf(confAsMap, sc.hadoopConfiguration())
val rdd =
newAPIHadoopRDDFromClassNames[K, V, F](sc,
None, inputFormatClass, keyClass, valueClass, conf)
val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(conf))
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new WritableToJavaConverter(confBroadcasted))
JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
}
private def newAPIHadoopRDDFromClassNames[K, V, F <: NewInputFormat[K, V]](
sc: JavaSparkContext,
path: Option[String] = None,
inputFormatClass: String,
keyClass: String,
valueClass: String,
conf: Configuration): RDD[(K, V)] = {
val kc = Utils.classForName[K](keyClass)
val vc = Utils.classForName[V](valueClass)
val fc = Utils.classForName[F](inputFormatClass)
if (path.isDefined) {
sc.sc.newAPIHadoopFile[K, V, F](path.get, fc, kc, vc, conf)
} else {
sc.sc.newAPIHadoopRDD[K, V, F](conf, fc, kc, vc)
}
}
/**
* Create an RDD from a file path, using an arbitrary [[org.apache.hadoop.mapred.InputFormat]],
* key and value class.
* A key and/or value converter class can optionally be passed in
* (see [[org.apache.spark.api.python.Converter]])
*/
def hadoopFile[K, V, F <: InputFormat[K, V]](
sc: JavaSparkContext,
path: String,
inputFormatClass: String,
keyClass: String,
valueClass: String,
keyConverterClass: String,
valueConverterClass: String,
confAsMap: java.util.HashMap[String, String],
batchSize: Int): JavaRDD[Array[Byte]] = {
val mergedConf = getMergedConf(confAsMap, sc.hadoopConfiguration())
val rdd =
hadoopRDDFromClassNames[K, V, F](sc,
Some(path), inputFormatClass, keyClass, valueClass, mergedConf)
val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(mergedConf))
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new WritableToJavaConverter(confBroadcasted))
JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
}
/**
* Create an RDD from a [[org.apache.hadoop.conf.Configuration]] converted from a map
* that is passed in from Python, using an arbitrary [[org.apache.hadoop.mapred.InputFormat]],
* key and value class
* A key and/or value converter class can optionally be passed in
* (see [[org.apache.spark.api.python.Converter]])
*/
def hadoopRDD[K, V, F <: InputFormat[K, V]](
sc: JavaSparkContext,
inputFormatClass: String,
keyClass: String,
valueClass: String,
keyConverterClass: String,
valueConverterClass: String,
confAsMap: java.util.HashMap[String, String],
batchSize: Int): JavaRDD[Array[Byte]] = {
val conf = getMergedConf(confAsMap, sc.hadoopConfiguration())
val rdd =
hadoopRDDFromClassNames[K, V, F](sc,
None, inputFormatClass, keyClass, valueClass, conf)
val confBroadcasted = sc.sc.broadcast(new SerializableConfiguration(conf))
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new WritableToJavaConverter(confBroadcasted))
JavaRDD.fromRDD(SerDeUtil.pairRDDToPython(converted, batchSize))
}
private def hadoopRDDFromClassNames[K, V, F <: InputFormat[K, V]](
sc: JavaSparkContext,
path: Option[String] = None,
inputFormatClass: String,
keyClass: String,
valueClass: String,
conf: Configuration) = {
val kc = Utils.classForName[K](keyClass)
val vc = Utils.classForName[V](valueClass)
val fc = Utils.classForName[F](inputFormatClass)
if (path.isDefined) {
sc.sc.hadoopFile(path.get, fc, kc, vc)
} else {
sc.sc.hadoopRDD(new JobConf(conf), fc, kc, vc)
}
}
def writeUTF(str: String, dataOut: DataOutputStream): Unit = {
val bytes = str.getBytes(StandardCharsets.UTF_8)
dataOut.writeInt(bytes.length)
dataOut.write(bytes)
}
/**
* Create a socket server and a background thread to serve the data in `items`,
*
* The socket server can only accept one connection, or close if no connection
* in 15 seconds.
*
* Once a connection comes in, it tries to serialize all the data in `items`
* and send them into this connection.
*
* The thread will terminate after all the data are sent or any exceptions happen.
*
* @return 3-tuple (as a Java array) with the port number of a local socket which serves the
* data collected from this job, the secret for authentication, and a socket auth
* server object that can be used to join the JVM serving thread in Python.
*/
def serveIterator(items: Iterator[_], threadName: String): Array[Any] = {
serveToStream(threadName) { out =>
writeIteratorToStream(items, new DataOutputStream(out))
}
}
/**
* Create a socket server and background thread to execute the writeFunc
* with the given OutputStream.
*
* The socket server can only accept one connection, or close if no connection
* in 15 seconds.
*
* Once a connection comes in, it will execute the block of code and pass in
* the socket output stream.
*
* The thread will terminate after the block of code is executed or any
* exceptions happen.
*
* @return 3-tuple (as a Java array) with the port number of a local socket which serves the
* data collected from this job, the secret for authentication, and a socket auth
* server object that can be used to join the JVM serving thread in Python.
*/
private[spark] def serveToStream(
threadName: String)(writeFunc: OutputStream => Unit): Array[Any] = {
SocketAuthServer.serveToStream(threadName, authHelper)(writeFunc)
}
private def getMergedConf(confAsMap: java.util.HashMap[String, String],
baseConf: Configuration): Configuration = {
val conf = PythonHadoopUtil.mapToConf(confAsMap)
PythonHadoopUtil.mergeConfs(baseConf, conf)
}
private def inferKeyValueTypes[K, V, KK, VV](rdd: RDD[(K, V)], keyConverterClass: String = null,
valueConverterClass: String = null): (Class[_ <: KK], Class[_ <: VV]) = {
// Peek at an element to figure out key/value types. Since Writables are not serializable,
// we cannot call first() on the converted RDD. Instead, we call first() on the original RDD
// and then convert locally.
val (key, value) = rdd.first()
val (kc, vc) = getKeyValueConverters[K, V, KK, VV](
keyConverterClass, valueConverterClass, new JavaToWritableConverter)
(kc.convert(key).getClass, vc.convert(value).getClass)
}
private def getKeyValueTypes[K, V](keyClass: String, valueClass: String):
Option[(Class[K], Class[V])] = {
for {
k <- Option(keyClass)
v <- Option(valueClass)
} yield (Utils.classForName(k), Utils.classForName(v))
}
private def getKeyValueConverters[K, V, KK, VV](
keyConverterClass: String,
valueConverterClass: String,
defaultConverter: Converter[_, _]): (Converter[K, KK], Converter[V, VV]) = {
val keyConverter = Converter.getInstance(Option(keyConverterClass),
defaultConverter.asInstanceOf[Converter[K, KK]])
val valueConverter = Converter.getInstance(Option(valueConverterClass),
defaultConverter.asInstanceOf[Converter[V, VV]])
(keyConverter, valueConverter)
}
/**
* Convert an RDD of key-value pairs from internal types to serializable types suitable for
* output, or vice versa.
*/
private def convertRDD[K, V](rdd: RDD[(K, V)],
keyConverterClass: String,
valueConverterClass: String,
defaultConverter: Converter[Any, Any]): RDD[(Any, Any)] = {
val (kc, vc) = getKeyValueConverters[K, V, Any, Any](keyConverterClass, valueConverterClass,
defaultConverter)
PythonHadoopUtil.convertRDD(rdd, kc, vc)
}
/**
* Output a Python RDD of key-value pairs as a Hadoop SequenceFile using the Writable types
* we convert from the RDD's key and value types. Note that keys and values can't be
* [[org.apache.hadoop.io.Writable]] types already, since Writables are not Java
* `Serializable` and we can't peek at them. The `path` can be on any Hadoop file system.
*/
def saveAsSequenceFile[C <: CompressionCodec](
pyRDD: JavaRDD[Array[Byte]],
batchSerialized: Boolean,
path: String,
compressionCodecClass: String): Unit = {
saveAsHadoopFile(
pyRDD, batchSerialized, path, "org.apache.hadoop.mapred.SequenceFileOutputFormat",
null, null, null, null, new java.util.HashMap(), compressionCodecClass)
}
/**
* Output a Python RDD of key-value pairs to any Hadoop file system, using old Hadoop
* `OutputFormat` in mapred package. Keys and values are converted to suitable output
* types using either user specified converters or, if not specified,
* [[org.apache.spark.api.python.JavaToWritableConverter]]. Post-conversion types
* `keyClass` and `valueClass` are automatically inferred if not specified. The passed-in
* `confAsMap` is merged with the default Hadoop conf associated with the SparkContext of
* this RDD.
*/
def saveAsHadoopFile[F <: OutputFormat[_, _], C <: CompressionCodec](
pyRDD: JavaRDD[Array[Byte]],
batchSerialized: Boolean,
path: String,
outputFormatClass: String,
keyClass: String,
valueClass: String,
keyConverterClass: String,
valueConverterClass: String,
confAsMap: java.util.HashMap[String, String],
compressionCodecClass: String): Unit = {
val rdd = SerDeUtil.pythonToPairRDD(pyRDD, batchSerialized)
val (kc, vc) = getKeyValueTypes(keyClass, valueClass).getOrElse(
inferKeyValueTypes(rdd, keyConverterClass, valueConverterClass))
val mergedConf = getMergedConf(confAsMap, pyRDD.context.hadoopConfiguration)
val codec = Option(compressionCodecClass).map(Utils.classForName(_).asInstanceOf[Class[C]])
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new JavaToWritableConverter)
val fc = Utils.classForName[F](outputFormatClass)
converted.saveAsHadoopFile(path, kc, vc, fc, new JobConf(mergedConf), codec = codec)
}
/**
* Output a Python RDD of key-value pairs to any Hadoop file system, using new Hadoop
* `OutputFormat` in mapreduce package. Keys and values are converted to suitable output
* types using either user specified converters or, if not specified,
* [[org.apache.spark.api.python.JavaToWritableConverter]]. Post-conversion types
* `keyClass` and `valueClass` are automatically inferred if not specified. The passed-in
* `confAsMap` is merged with the default Hadoop conf associated with the SparkContext of
* this RDD.
*/
def saveAsNewAPIHadoopFile[F <: NewOutputFormat[_, _]](
pyRDD: JavaRDD[Array[Byte]],
batchSerialized: Boolean,
path: String,
outputFormatClass: String,
keyClass: String,
valueClass: String,
keyConverterClass: String,
valueConverterClass: String,
confAsMap: java.util.HashMap[String, String]): Unit = {
val rdd = SerDeUtil.pythonToPairRDD(pyRDD, batchSerialized)
val (kc, vc) = getKeyValueTypes(keyClass, valueClass).getOrElse(
inferKeyValueTypes(rdd, keyConverterClass, valueConverterClass))
val mergedConf = getMergedConf(confAsMap, pyRDD.context.hadoopConfiguration)
val converted = convertRDD(rdd, keyConverterClass, valueConverterClass,
new JavaToWritableConverter)
val fc = Utils.classForName(outputFormatClass).asInstanceOf[Class[F]]
converted.saveAsNewAPIHadoopFile(path, kc, vc, fc, mergedConf)
}
/**
* Output a Python RDD of key-value pairs to any Hadoop file system, using a Hadoop conf
* converted from the passed-in `confAsMap`. The conf should set relevant output params (
* e.g., output path, output format, etc), in the same way as it would be configured for
* a Hadoop MapReduce job. Both old and new Hadoop OutputFormat APIs are supported
* (mapred vs. mapreduce). Keys/values are converted for output using either user specified
* converters or, by default, [[org.apache.spark.api.python.JavaToWritableConverter]].
*/
def saveAsHadoopDataset(
pyRDD: JavaRDD[Array[Byte]],
batchSerialized: Boolean,
confAsMap: java.util.HashMap[String, String],
keyConverterClass: String,
valueConverterClass: String,
useNewAPI: Boolean): Unit = {
val conf = getMergedConf(confAsMap, pyRDD.context.hadoopConfiguration)
val converted = convertRDD(SerDeUtil.pythonToPairRDD(pyRDD, batchSerialized),
keyConverterClass, valueConverterClass, new JavaToWritableConverter)
if (useNewAPI) {
converted.saveAsNewAPIHadoopDataset(conf)
} else {
converted.saveAsHadoopDataset(new JobConf(conf))
}
}
}
private
class BytesToString extends org.apache.spark.api.java.function.Function[Array[Byte], String] {
override def call(arr: Array[Byte]) : String = new String(arr, StandardCharsets.UTF_8)
}
/**
* Internal class that acts as an `AccumulatorV2` for Python accumulators. Inside, it
* collects a list of pickled strings that we pass to Python through a socket.
*/
private[spark] class PythonAccumulatorV2(
@transient private val serverHost: String,
private val serverPort: Int,
private val secretToken: String)
extends CollectionAccumulator[Array[Byte]] with Logging {
Utils.checkHost(serverHost)
val bufferSize = SparkEnv.get.conf.get(BUFFER_SIZE)
/**
* We try to reuse a single Socket to transfer accumulator updates, as they are all added
* by the DAGScheduler's single-threaded RpcEndpoint anyway.
*/
@transient private var socket: Socket = _
private def openSocket(): Socket = synchronized {
if (socket == null || socket.isClosed) {
socket = new Socket(serverHost, serverPort)
logInfo(s"Connected to AccumulatorServer at host: $serverHost port: $serverPort")
// send the secret just for the initial authentication when opening a new connection
socket.getOutputStream.write(secretToken.getBytes(StandardCharsets.UTF_8))
}
socket
}
// Need to override so the types match with PythonFunction
override def copyAndReset(): PythonAccumulatorV2 = {
new PythonAccumulatorV2(serverHost, serverPort, secretToken)
}
override def merge(other: AccumulatorV2[Array[Byte], JList[Array[Byte]]]): Unit = synchronized {
val otherPythonAccumulator = other.asInstanceOf[PythonAccumulatorV2]
// This conditional isn't strictly speaking needed - merging only currently happens on the
// driver program - but that isn't guaranteed so incase this changes.
if (serverHost == null) {
// We are on the worker
super.merge(otherPythonAccumulator)
} else {
// This happens on the master, where we pass the updates to Python through a socket
val socket = openSocket()
val in = socket.getInputStream
val out = new DataOutputStream(new BufferedOutputStream(socket.getOutputStream, bufferSize))
val values = other.value
out.writeInt(values.size)
for (array <- values.asScala) {
out.writeInt(array.length)
out.write(array)
}
out.flush()
// Wait for a byte from the Python side as an acknowledgement
val byteRead = in.read()
if (byteRead == -1) {
throw new SparkException("EOF reached before Python server acknowledged")
}
}
}
}
private[spark] class PythonBroadcast(@transient var path: String) extends Serializable
with Logging {
// id of the Broadcast variable which wrapped this PythonBroadcast
private var broadcastId: Long = _
private var encryptionServer: SocketAuthServer[Unit] = null
private var decryptionServer: SocketAuthServer[Unit] = null
/**
* Read data from disks, then copy it to `out`
*/
private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
out.writeLong(broadcastId)
val in = new FileInputStream(new File(path))
try {
Utils.copyStream(in, out)
} finally {
in.close()
}
}
/**
* Write data into disk and map it to a broadcast block.
*/
private def readObject(in: ObjectInputStream): Unit = {
broadcastId = in.readLong()
val blockId = BroadcastBlockId(broadcastId, "python")
val blockManager = SparkEnv.get.blockManager
val diskBlockManager = blockManager.diskBlockManager
if (!diskBlockManager.containsBlock(blockId)) {
Utils.tryOrIOException {
val dir = new File(Utils.getLocalDir(SparkEnv.get.conf))
val file = File.createTempFile("broadcast", "", dir)
val out = new FileOutputStream(file)
Utils.tryWithSafeFinally {
val size = Utils.copyStream(in, out)
val ct = implicitly[ClassTag[Object]]
// SPARK-28486: map broadcast file to a broadcast block, so that it could be
// cleared by unpersist/destroy rather than gc(previously).
val blockStoreUpdater = blockManager.
TempFileBasedBlockStoreUpdater(blockId, StorageLevel.DISK_ONLY, ct, file, size)
blockStoreUpdater.save()
} {
out.close()
}
}
}
path = diskBlockManager.getFile(blockId).getAbsolutePath
}
def setBroadcastId(bid: Long): Unit = {
this.broadcastId = bid
}
def setupEncryptionServer(): Array[Any] = {
encryptionServer = new SocketAuthServer[Unit]("broadcast-encrypt-server") {
override def handleConnection(sock: Socket): Unit = {
val env = SparkEnv.get
val in = sock.getInputStream()
val abspath = new File(path).getAbsolutePath
val out = env.serializerManager.wrapForEncryption(new FileOutputStream(abspath))
DechunkedInputStream.dechunkAndCopyToOutput(in, out)
}
}
Array(encryptionServer.port, encryptionServer.secret)
}
def setupDecryptionServer(): Array[Any] = {
decryptionServer = new SocketAuthServer[Unit]("broadcast-decrypt-server-for-driver") {
override def handleConnection(sock: Socket): Unit = {
val out = new DataOutputStream(new BufferedOutputStream(sock.getOutputStream()))
Utils.tryWithSafeFinally {
val in = SparkEnv.get.serializerManager.wrapForEncryption(new FileInputStream(path))
Utils.tryWithSafeFinally {
Utils.copyStream(in, out, false)
} {
in.close()
}
out.flush()
} {
JavaUtils.closeQuietly(out)
}
}
}
Array(decryptionServer.port, decryptionServer.secret)
}
def waitTillBroadcastDataSent(): Unit = decryptionServer.getResult()
def waitTillDataReceived(): Unit = encryptionServer.getResult()
}
/**
* The inverse of pyspark's ChunkedStream for sending data of unknown size.
*
* We might be serializing a really large object from python -- we don't want
* python to buffer the whole thing in memory, nor can it write to a file,
* so we don't know the length in advance. So python writes it in chunks, each chunk
* preceded by a length, till we get a "length" of -1 which serves as EOF.
*
* Tested from python tests.
*/
private[spark] class DechunkedInputStream(wrapped: InputStream) extends InputStream with Logging {
private val din = new DataInputStream(wrapped)
private var remainingInChunk = din.readInt()
override def read(): Int = {
val into = new Array[Byte](1)
val n = read(into, 0, 1)
if (n == -1) {
-1
} else {
// if you just cast a byte to an int, then anything > 127 is negative, which is interpreted
// as an EOF
val b = into(0)
if (b < 0) {
256 + b
} else {
b
}
}
}
override def read(dest: Array[Byte], off: Int, len: Int): Int = {
if (remainingInChunk == -1) {
return -1
}
var destSpace = len
var destPos = off
while (destSpace > 0 && remainingInChunk != -1) {
val toCopy = math.min(remainingInChunk, destSpace)
val read = din.read(dest, destPos, toCopy)
destPos += read
destSpace -= read
remainingInChunk -= read
if (remainingInChunk == 0) {
remainingInChunk = din.readInt()
}
}
assert(destSpace == 0 || remainingInChunk == -1)
destPos - off
}
override def close(): Unit = wrapped.close()
}
private[spark] object DechunkedInputStream {
/**
* Dechunks the input, copies to output, and closes both input and the output safely.
*/
def dechunkAndCopyToOutput(chunked: InputStream, out: OutputStream): Unit = {
val dechunked = new DechunkedInputStream(chunked)
Utils.tryWithSafeFinally {
Utils.copyStream(dechunked, out)
} {
JavaUtils.closeQuietly(out)
JavaUtils.closeQuietly(dechunked)
}
}
}
/**
* Sends decrypted broadcast data to python worker. See [[PythonRunner]] for entire protocol.
*/
private[spark] class EncryptedPythonBroadcastServer(
val env: SparkEnv,
val idsAndFiles: Seq[(Long, String)])
extends SocketAuthServer[Unit]("broadcast-decrypt-server") with Logging {
override def handleConnection(socket: Socket): Unit = {
val out = new DataOutputStream(new BufferedOutputStream(socket.getOutputStream()))
var socketIn: InputStream = null
// send the broadcast id, then the decrypted data. We don't need to send the length, the
// the python pickle module just needs a stream.
Utils.tryWithSafeFinally {
(idsAndFiles).foreach { case (id, path) =>
out.writeLong(id)
val in = env.serializerManager.wrapForEncryption(new FileInputStream(path))
Utils.tryWithSafeFinally {
Utils.copyStream(in, out, false)
} {
in.close()
}
}
logTrace("waiting for python to accept broadcast data over socket")
out.flush()
socketIn = socket.getInputStream()
socketIn.read()
logTrace("done serving broadcast data")
} {
JavaUtils.closeQuietly(socketIn)
JavaUtils.closeQuietly(out)
}
}
def waitTillBroadcastDataSent(): Unit = {
getResult()
}
}
/**
* Helper for making RDD[Array[Byte]] from some python data, by reading the data from python
* over a socket. This is used in preference to writing data to a file when encryption is enabled.
*/
private[spark] abstract class PythonRDDServer
extends SocketAuthServer[JavaRDD[Array[Byte]]]("pyspark-parallelize-server") {
def handleConnection(sock: Socket): JavaRDD[Array[Byte]] = {
val in = sock.getInputStream()
val dechunkedInput: InputStream = new DechunkedInputStream(in)
streamToRDD(dechunkedInput)
}
protected def streamToRDD(input: InputStream): RDD[Array[Byte]]
}
private[spark] class PythonParallelizeServer(sc: SparkContext, parallelism: Int)
extends PythonRDDServer {
override protected def streamToRDD(input: InputStream): RDD[Array[Byte]] = {
PythonRDD.readRDDFromInputStream(sc, input, parallelism)
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦