spark WriteInputFormatTestDataGenerator 源码

  • 2022-10-20
  • 浏览 (432)

spark WriteInputFormatTestDataGenerator 代码

文件路径:/core/src/main/scala/org/apache/spark/api/python/WriteInputFormatTestDataGenerator.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.api.python

import java.{util => ju}
import java.io.{DataInput, DataOutput}
import java.nio.charset.StandardCharsets

import scala.collection.JavaConverters._

import org.apache.hadoop.io._
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat

import org.apache.spark.api.java.JavaSparkContext
import org.apache.spark.errors.SparkCoreErrors

/**
 * A class to test Pickle serialization on the Scala side, that will be deserialized
 * in Python
 */
case class TestWritable(var str: String, var int: Int, var double: Double) extends Writable {
  def this() = this("", 0, 0.0)

  def getStr: String = str
  def setStr(str: String): Unit = { this.str = str }
  def getInt: Int = int
  def setInt(int: Int): Unit = { this.int = int }
  def getDouble: Double = double
  def setDouble(double: Double): Unit = { this.double = double }

  def write(out: DataOutput): Unit = {
    out.writeUTF(str)
    out.writeInt(int)
    out.writeDouble(double)
  }

  def readFields(in: DataInput): Unit = {
    str = in.readUTF()
    int = in.readInt()
    double = in.readDouble()
  }
}

private[python] class TestInputKeyConverter extends Converter[Any, Any] {
  override def convert(obj: Any): Char = {
    obj.asInstanceOf[IntWritable].get().toChar
  }
}

private[python] class TestInputValueConverter extends Converter[Any, Any] {
  override def convert(obj: Any): ju.List[Double] = {
    val m = obj.asInstanceOf[MapWritable]
    m.keySet.asScala.map(_.asInstanceOf[DoubleWritable].get()).toSeq.asJava
  }
}

private[python] class TestOutputKeyConverter extends Converter[Any, Any] {
  override def convert(obj: Any): Text = {
    new Text(obj.asInstanceOf[Int].toString)
  }
}

private[python] class TestOutputValueConverter extends Converter[Any, Any] {
  override def convert(obj: Any): DoubleWritable = {
    new DoubleWritable(obj.asInstanceOf[java.util.Map[Double, _]].keySet().iterator().next())
  }
}

private[python] class DoubleArrayWritable extends ArrayWritable(classOf[DoubleWritable])

private[python] class DoubleArrayToWritableConverter extends Converter[Any, Writable] {
  override def convert(obj: Any): DoubleArrayWritable = obj match {
    case arr if arr.getClass.isArray && arr.getClass.getComponentType == classOf[Double] =>
      val daw = new DoubleArrayWritable
      daw.set(arr.asInstanceOf[Array[Double]].map(new DoubleWritable(_)))
      daw
    case other => throw SparkCoreErrors.unsupportedDataTypeError(other)
  }
}

private[python] class WritableToDoubleArrayConverter extends Converter[Any, Array[Double]] {
  override def convert(obj: Any): Array[Double] = obj match {
    case daw : DoubleArrayWritable => daw.get().map(_.asInstanceOf[DoubleWritable].get())
    case other => throw SparkCoreErrors.unsupportedDataTypeError(other)
  }
}

/**
 * This object contains method to generate SequenceFile test data and write it to a
 * given directory (probably a temp directory)
 */
object WriteInputFormatTestDataGenerator {

  def main(args: Array[String]): Unit = {
    val path = args(0)
    val sc = new JavaSparkContext("local[4]", "test-writables")
    generateData(path, sc)
  }

  def generateData(path: String, jsc: JavaSparkContext): Unit = {
    val sc = jsc.sc

    val basePath = s"$path/sftestdata/"
    val textPath = s"$basePath/sftext/"
    val intPath = s"$basePath/sfint/"
    val doublePath = s"$basePath/sfdouble/"
    val arrPath = s"$basePath/sfarray/"
    val mapPath = s"$basePath/sfmap/"
    val classPath = s"$basePath/sfclass/"
    val bytesPath = s"$basePath/sfbytes/"
    val boolPath = s"$basePath/sfbool/"
    val nullPath = s"$basePath/sfnull/"

    /*
     * Create test data for IntWritable, DoubleWritable, Text, BytesWritable,
     * BooleanWritable and NullWritable
     */
    val intKeys = Seq((1, "aa"), (2, "bb"), (2, "aa"), (3, "cc"), (2, "bb"), (1, "aa"))
    sc.parallelize(intKeys).saveAsSequenceFile(intPath)
    sc.parallelize(intKeys.map{ case (k, v) => (k.toDouble, v) }).saveAsSequenceFile(doublePath)
    sc.parallelize(intKeys.map{ case (k, v) => (k.toString, v) }).saveAsSequenceFile(textPath)
    sc.parallelize(intKeys.map{ case (k, v) => (k, v.getBytes(StandardCharsets.UTF_8)) }
      ).saveAsSequenceFile(bytesPath)
    val bools = Seq((1, true), (2, true), (2, false), (3, true), (2, false), (1, false))
    sc.parallelize(bools).saveAsSequenceFile(boolPath)
    sc.parallelize(intKeys).map{ case (k, v) =>
      (new IntWritable(k), NullWritable.get())
    }.saveAsSequenceFile(nullPath)

    // Create test data for ArrayWritable
    val data = Seq(
      (1, Array.empty[Double]),
      (2, Array(3.0, 4.0, 5.0)),
      (3, Array(4.0, 5.0, 6.0))
    )
    sc.parallelize(data, numSlices = 2)
      .map{ case (k, v) =>
        val va = new DoubleArrayWritable
        va.set(v.map(new DoubleWritable(_)))
        (new IntWritable(k), va)
    }.saveAsNewAPIHadoopFile[SequenceFileOutputFormat[IntWritable, DoubleArrayWritable]](arrPath)

    // Create test data for MapWritable, with keys DoubleWritable and values Text
    val mapData = Seq(
      (1, Map()),
      (2, Map(1.0 -> "cc")),
      (3, Map(2.0 -> "dd")),
      (2, Map(1.0 -> "aa")),
      (1, Map(3.0 -> "bb"))
    )
    sc.parallelize(mapData, numSlices = 2).map{ case (i, m) =>
      val mw = new MapWritable()
      m.foreach { case (k, v) =>
        mw.put(new DoubleWritable(k), new Text(v))
      }
      (new IntWritable(i), mw)
    }.saveAsSequenceFile(mapPath)

    // Create test data for arbitrary custom writable TestWritable
    val testClass = Seq(
      ("1", TestWritable("test1", 1, 1.0)),
      ("2", TestWritable("test2", 2, 2.3)),
      ("3", TestWritable("test3", 3, 3.1)),
      ("5", TestWritable("test56", 5, 5.5)),
      ("4", TestWritable("test4", 4, 4.2))
    )
    val rdd = sc.parallelize(testClass, numSlices = 2).map{ case (k, v) => (new Text(k), v) }
    rdd.saveAsNewAPIHadoopFile(classPath,
      classOf[Text], classOf[TestWritable],
      classOf[SequenceFileOutputFormat[Text, TestWritable]])
  }


}

相关信息

spark 源码目录

相关文章

spark Py4JServer 源码

spark PythonGatewayServer 源码

spark PythonHadoopUtil 源码

spark PythonPartitioner 源码

spark PythonRDD 源码

spark PythonRunner 源码

spark PythonUtils 源码

spark PythonWorkerFactory 源码

spark SerDeUtil 源码

0  赞