spark PythonWorkerFactory 源码

  • 2022-10-20
  • 浏览 (302)

spark PythonWorkerFactory 代码

文件路径:/core/src/main/scala/org/apache/spark/api/python/PythonWorkerFactory.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.api.python

import java.io.{DataInputStream, DataOutputStream, EOFException, InputStream}
import java.net.{InetAddress, ServerSocket, Socket, SocketException}
import java.util.Arrays
import java.util.concurrent.TimeUnit
import javax.annotation.concurrent.GuardedBy

import scala.collection.JavaConverters._
import scala.collection.mutable

import org.apache.spark._
import org.apache.spark.errors.SparkCoreErrors
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.Python._
import org.apache.spark.security.SocketAuthHelper
import org.apache.spark.util.{RedirectThread, Utils}

private[spark] class PythonWorkerFactory(pythonExec: String, envVars: Map[String, String])
  extends Logging { self =>

  import PythonWorkerFactory._

  // Because forking processes from Java is expensive, we prefer to launch a single Python daemon,
  // pyspark/daemon.py (by default) and tell it to fork new workers for our tasks. This daemon
  // currently only works on UNIX-based systems now because it uses signals for child management,
  // so we can also fall back to launching workers, pyspark/worker.py (by default) directly.
  private val useDaemon = {
    val useDaemonEnabled = SparkEnv.get.conf.get(PYTHON_USE_DAEMON)

    // This flag is ignored on Windows as it's unable to fork.
    !System.getProperty("os.name").startsWith("Windows") && useDaemonEnabled
  }

  // WARN: Both configurations, 'spark.python.daemon.module' and 'spark.python.worker.module' are
  // for very advanced users and they are experimental. This should be considered
  // as expert-only option, and shouldn't be used before knowing what it means exactly.

  // This configuration indicates the module to run the daemon to execute its Python workers.
  private val daemonModule =
    SparkEnv.get.conf.get(PYTHON_DAEMON_MODULE).map { value =>
      logInfo(
        s"Python daemon module in PySpark is set to [$value] in '${PYTHON_DAEMON_MODULE.key}', " +
        "using this to start the daemon up. Note that this configuration only has an effect when " +
        s"'${PYTHON_USE_DAEMON.key}' is enabled and the platform is not Windows.")
      value
    }.getOrElse("pyspark.daemon")

  // This configuration indicates the module to run each Python worker.
  private val workerModule =
    SparkEnv.get.conf.get(PYTHON_WORKER_MODULE).map { value =>
      logInfo(
        s"Python worker module in PySpark is set to [$value] in '${PYTHON_WORKER_MODULE.key}', " +
        "using this to start the worker up. Note that this configuration only has an effect when " +
        s"'${PYTHON_USE_DAEMON.key}' is disabled or the platform is Windows.")
      value
    }.getOrElse("pyspark.worker")

  private val authHelper = new SocketAuthHelper(SparkEnv.get.conf)

  @GuardedBy("self")
  private var daemon: Process = null
  val daemonHost = InetAddress.getLoopbackAddress()
  @GuardedBy("self")
  private var daemonPort: Int = 0
  @GuardedBy("self")
  private val daemonWorkers = new mutable.WeakHashMap[Socket, Int]()
  @GuardedBy("self")
  private val idleWorkers = new mutable.Queue[Socket]()
  @GuardedBy("self")
  private var lastActivityNs = 0L
  new MonitorThread().start()

  @GuardedBy("self")
  private val simpleWorkers = new mutable.WeakHashMap[Socket, Process]()

  private val pythonPath = PythonUtils.mergePythonPaths(
    PythonUtils.sparkPythonPath,
    envVars.getOrElse("PYTHONPATH", ""),
    sys.env.getOrElse("PYTHONPATH", ""))

  def create(): (Socket, Option[Int]) = {
    if (useDaemon) {
      self.synchronized {
        if (idleWorkers.nonEmpty) {
          val worker = idleWorkers.dequeue()
          return (worker, daemonWorkers.get(worker))
        }
      }
      createThroughDaemon()
    } else {
      createSimpleWorker()
    }
  }

  /**
   * Connect to a worker launched through pyspark/daemon.py (by default), which forks python
   * processes itself to avoid the high cost of forking from Java. This currently only works
   * on UNIX-based systems.
   */
  private def createThroughDaemon(): (Socket, Option[Int]) = {

    def createSocket(): (Socket, Option[Int]) = {
      val socket = new Socket(daemonHost, daemonPort)
      val pid = new DataInputStream(socket.getInputStream).readInt()
      if (pid < 0) {
        throw new IllegalStateException("Python daemon failed to launch worker with code " + pid)
      }

      authHelper.authToServer(socket)
      daemonWorkers.put(socket, pid)
      (socket, Some(pid))
    }

    self.synchronized {
      // Start the daemon if it hasn't been started
      startDaemon()

      // Attempt to connect, restart and retry once if it fails
      try {
        createSocket()
      } catch {
        case exc: SocketException =>
          logWarning("Failed to open socket to Python daemon:", exc)
          logWarning("Assuming that daemon unexpectedly quit, attempting to restart")
          stopDaemon()
          startDaemon()
          createSocket()
      }
    }
  }

  /**
   * Launch a worker by executing worker.py (by default) directly and telling it to connect to us.
   */
  private def createSimpleWorker(): (Socket, Option[Int]) = {
    var serverSocket: ServerSocket = null
    try {
      serverSocket = new ServerSocket(0, 1, InetAddress.getLoopbackAddress())

      // Create and start the worker
      val pb = new ProcessBuilder(Arrays.asList(pythonExec, "-m", workerModule))
      val workerEnv = pb.environment()
      workerEnv.putAll(envVars.asJava)
      workerEnv.put("PYTHONPATH", pythonPath)
      // This is equivalent to setting the -u flag; we use it because ipython doesn't support -u:
      workerEnv.put("PYTHONUNBUFFERED", "YES")
      workerEnv.put("PYTHON_WORKER_FACTORY_PORT", serverSocket.getLocalPort.toString)
      workerEnv.put("PYTHON_WORKER_FACTORY_SECRET", authHelper.secret)
      if (Utils.preferIPv6) {
        workerEnv.put("SPARK_PREFER_IPV6", "True")
      }
      val worker = pb.start()

      // Redirect worker stdout and stderr
      redirectStreamsToStderr(worker.getInputStream, worker.getErrorStream)

      // Wait for it to connect to our socket, and validate the auth secret.
      serverSocket.setSoTimeout(10000)

      try {
        val socket = serverSocket.accept()
        authHelper.authClient(socket)
        // TODO: When we drop JDK 8, we can just use worker.pid()
        val pid = new DataInputStream(socket.getInputStream).readInt()
        if (pid < 0) {
          throw new IllegalStateException("Python failed to launch worker with code " + pid)
        }
        self.synchronized {
          simpleWorkers.put(socket, worker)
        }
        return (socket, Some(pid))
      } catch {
        case e: Exception =>
          throw new SparkException("Python worker failed to connect back.", e)
      }
    } finally {
      if (serverSocket != null) {
        serverSocket.close()
      }
    }
    null
  }

  private def startDaemon(): Unit = {
    self.synchronized {
      // Is it already running?
      if (daemon != null) {
        return
      }

      try {
        // Create and start the daemon
        val command = Arrays.asList(pythonExec, "-m", daemonModule)
        val pb = new ProcessBuilder(command)
        val workerEnv = pb.environment()
        workerEnv.putAll(envVars.asJava)
        workerEnv.put("PYTHONPATH", pythonPath)
        workerEnv.put("PYTHON_WORKER_FACTORY_SECRET", authHelper.secret)
        if (Utils.preferIPv6) {
          workerEnv.put("SPARK_PREFER_IPV6", "True")
        }
        // This is equivalent to setting the -u flag; we use it because ipython doesn't support -u:
        workerEnv.put("PYTHONUNBUFFERED", "YES")
        daemon = pb.start()

        val in = new DataInputStream(daemon.getInputStream)
        try {
          daemonPort = in.readInt()
        } catch {
          case _: EOFException if daemon.isAlive =>
            throw SparkCoreErrors.eofExceptionWhileReadPortNumberError(
              daemonModule)
          case _: EOFException =>
            throw SparkCoreErrors.
              eofExceptionWhileReadPortNumberError(daemonModule, Some(daemon.exitValue))
        }

        // test that the returned port number is within a valid range.
        // note: this does not cover the case where the port number
        // is arbitrary data but is also coincidentally within range
        if (daemonPort < 1 || daemonPort > 0xffff) {
          val exceptionMessage = f"""
            |Bad data in $daemonModule's standard output. Invalid port number:
            |  $daemonPort (0x$daemonPort%08x)
            |Python command to execute the daemon was:
            |  ${command.asScala.mkString(" ")}
            |Check that you don't have any unexpected modules or libraries in
            |your PYTHONPATH:
            |  $pythonPath
            |Also, check if you have a sitecustomize.py module in your python path,
            |or in your python installation, that is printing to standard output"""
          throw new SparkException(exceptionMessage.stripMargin)
        }

        // Redirect daemon stdout and stderr
        redirectStreamsToStderr(in, daemon.getErrorStream)
      } catch {
        case e: Exception =>

          // If the daemon exists, wait for it to finish and get its stderr
          val stderr = Option(daemon)
            .flatMap { d => Utils.getStderr(d, PROCESS_WAIT_TIMEOUT_MS) }
            .getOrElse("")

          stopDaemon()

          if (stderr != "") {
            val formattedStderr = stderr.replace("\n", "\n  ")
            val errorMessage = s"""
              |Error from python worker:
              |  $formattedStderr
              |PYTHONPATH was:
              |  $pythonPath
              |$e"""

            // Append error message from python daemon, but keep original stack trace
            val wrappedException = new SparkException(errorMessage.stripMargin)
            wrappedException.setStackTrace(e.getStackTrace)
            throw wrappedException
          } else {
            throw e
          }
      }

      // Important: don't close daemon's stdin (daemon.getOutputStream) so it can correctly
      // detect our disappearance.
    }
  }

  /**
   * Redirect the given streams to our stderr in separate threads.
   */
  private def redirectStreamsToStderr(stdout: InputStream, stderr: InputStream): Unit = {
    try {
      new RedirectThread(stdout, System.err, "stdout reader for " + pythonExec).start()
      new RedirectThread(stderr, System.err, "stderr reader for " + pythonExec).start()
    } catch {
      case e: Exception =>
        logError("Exception in redirecting streams", e)
    }
  }

  /**
   * Monitor all the idle workers, kill them after timeout.
   */
  private class MonitorThread extends Thread(s"Idle Worker Monitor for $pythonExec") {

    setDaemon(true)

    override def run(): Unit = {
      while (true) {
        self.synchronized {
          if (IDLE_WORKER_TIMEOUT_NS < System.nanoTime() - lastActivityNs) {
            cleanupIdleWorkers()
            lastActivityNs = System.nanoTime()
          }
        }
        Thread.sleep(10000)
      }
    }
  }

  private def cleanupIdleWorkers(): Unit = {
    while (idleWorkers.nonEmpty) {
      val worker = idleWorkers.dequeue()
      try {
        // the worker will exit after closing the socket
        worker.close()
      } catch {
        case e: Exception =>
          logWarning("Failed to close worker socket", e)
      }
    }
  }

  private def stopDaemon(): Unit = {
    self.synchronized {
      if (useDaemon) {
        cleanupIdleWorkers()

        // Request shutdown of existing daemon by sending SIGTERM
        if (daemon != null) {
          daemon.destroy()
        }

        daemon = null
        daemonPort = 0
      } else {
        simpleWorkers.mapValues(_.destroy())
      }
    }
  }

  def stop(): Unit = {
    stopDaemon()
  }

  def stopWorker(worker: Socket): Unit = {
    self.synchronized {
      if (useDaemon) {
        if (daemon != null) {
          daemonWorkers.get(worker).foreach { pid =>
            // tell daemon to kill worker by pid
            val output = new DataOutputStream(daemon.getOutputStream)
            output.writeInt(pid)
            output.flush()
            daemon.getOutputStream.flush()
          }
        }
      } else {
        simpleWorkers.get(worker).foreach(_.destroy())
      }
    }
    worker.close()
  }

  def releaseWorker(worker: Socket): Unit = {
    if (useDaemon) {
      self.synchronized {
        lastActivityNs = System.nanoTime()
        idleWorkers.enqueue(worker)
      }
    } else {
      // Cleanup the worker socket. This will also cause the Python worker to exit.
      try {
        worker.close()
      } catch {
        case e: Exception =>
          logWarning("Failed to close worker socket", e)
      }
    }
  }
}

private object PythonWorkerFactory {
  val PROCESS_WAIT_TIMEOUT_MS = 10000
  val IDLE_WORKER_TIMEOUT_NS = TimeUnit.MINUTES.toNanos(1)  // kill idle workers after 1 minute
}

相关信息

spark 源码目录

相关文章

spark Py4JServer 源码

spark PythonGatewayServer 源码

spark PythonHadoopUtil 源码

spark PythonPartitioner 源码

spark PythonRDD 源码

spark PythonRunner 源码

spark PythonUtils 源码

spark SerDeUtil 源码

spark WriteInputFormatTestDataGenerator 源码

0  赞