spark JdbcRDD 源码

  • 2022-10-20
  • 浏览 (375)

spark JdbcRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/JdbcRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.sql.{Connection, ResultSet}

import scala.reflect.ClassTag

import org.apache.spark.{Partition, SparkContext, TaskContext}
import org.apache.spark.api.java.{JavaRDD, JavaSparkContext}
import org.apache.spark.api.java.JavaSparkContext.fakeClassTag
import org.apache.spark.api.java.function.{Function => JFunction}
import org.apache.spark.internal.Logging
import org.apache.spark.util.NextIterator

private[spark] class JdbcPartition(idx: Int, val lower: Long, val upper: Long) extends Partition {
  override def index: Int = idx
}

/**
 * An RDD that executes a SQL query on a JDBC connection and reads results.
 * For usage example, see test case JdbcRDDSuite.
 *
 * @param getConnection a function that returns an open Connection.
 *   The RDD takes care of closing the connection.
 * @param sql the text of the query.
 *   The query must contain two ? placeholders for parameters used to partition the results.
 *   For example,
 *   {{{
 *   select title, author from books where ? <= id and id <= ?
 *   }}}
 * @param lowerBound the minimum value of the first placeholder
 * @param upperBound the maximum value of the second placeholder
 *   The lower and upper bounds are inclusive.
 * @param numPartitions the number of partitions.
 *   Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2,
 *   the query would be executed twice, once with (1, 10) and once with (11, 20)
 * @param mapRow a function from a ResultSet to a single row of the desired result type(s).
 *   This should only call getInt, getString, etc; the RDD takes care of calling next.
 *   The default maps a ResultSet to an array of Object.
 */
class JdbcRDD[T: ClassTag](
    sc: SparkContext,
    getConnection: () => Connection,
    sql: String,
    lowerBound: Long,
    upperBound: Long,
    numPartitions: Int,
    mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)
  extends RDD[T](sc, Nil) with Logging {

  override def getPartitions: Array[Partition] = {
    // bounds are inclusive, hence the + 1 here and - 1 on end
    val length = BigInt(1) + upperBound - lowerBound
    (0 until numPartitions).map { i =>
      val start = lowerBound + ((i * length) / numPartitions)
      val end = lowerBound + (((i + 1) * length) / numPartitions) - 1
      new JdbcPartition(i, start.toLong, end.toLong)
    }.toArray
  }

  override def compute(thePart: Partition, context: TaskContext): Iterator[T] = new NextIterator[T]
  {
    context.addTaskCompletionListener[Unit]{ context => closeIfNeeded() }
    val part = thePart.asInstanceOf[JdbcPartition]
    val conn = getConnection()
    val stmt = conn.prepareStatement(sql, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)

    val url = conn.getMetaData.getURL
    if (url.startsWith("jdbc:mysql:")) {
      // setFetchSize(Integer.MIN_VALUE) is a mysql driver specific way to force
      // streaming results, rather than pulling entire resultset into memory.
      // See the below URL
      // dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-implementation-notes.html

      stmt.setFetchSize(Integer.MIN_VALUE)
    } else {
      stmt.setFetchSize(100)
    }

    logInfo(s"statement fetch size set to: ${stmt.getFetchSize}")

    stmt.setLong(1, part.lower)
    stmt.setLong(2, part.upper)
    val rs = stmt.executeQuery()

    override def getNext(): T = {
      if (rs.next()) {
        mapRow(rs)
      } else {
        finished = true
        null.asInstanceOf[T]
      }
    }

    override def close(): Unit = {
      try {
        if (null != rs) {
          rs.close()
        }
      } catch {
        case e: Exception => logWarning("Exception closing resultset", e)
      }
      try {
        if (null != stmt) {
          stmt.close()
        }
      } catch {
        case e: Exception => logWarning("Exception closing statement", e)
      }
      try {
        if (null != conn) {
          conn.close()
        }
        logInfo("closed connection")
      } catch {
        case e: Exception => logWarning("Exception closing connection", e)
      }
    }
  }
}

object JdbcRDD {
  def resultSetToObjectArray(rs: ResultSet): Array[Object] = {
    Array.tabulate[Object](rs.getMetaData.getColumnCount)(i => rs.getObject(i + 1))
  }

  trait ConnectionFactory extends Serializable {
    @throws[Exception]
    def getConnection: Connection
  }

  /**
   * Create an RDD that executes a SQL query on a JDBC connection and reads results.
   * For usage example, see test case JavaAPISuite.testJavaJdbcRDD.
   *
   * @param connectionFactory a factory that returns an open Connection.
   *   The RDD takes care of closing the connection.
   * @param sql the text of the query.
   *   The query must contain two ? placeholders for parameters used to partition the results.
   *   For example,
   *   {{{
   *   select title, author from books where ? <= id and id <= ?
   *   }}}
   * @param lowerBound the minimum value of the first placeholder
   * @param upperBound the maximum value of the second placeholder
   *   The lower and upper bounds are inclusive.
   * @param numPartitions the number of partitions.
   *   Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2,
   *   the query would be executed twice, once with (1, 10) and once with (11, 20)
   * @param mapRow a function from a ResultSet to a single row of the desired result type(s).
   *   This should only call getInt, getString, etc; the RDD takes care of calling next.
   *   The default maps a ResultSet to an array of Object.
   */
  def create[T](
      sc: JavaSparkContext,
      connectionFactory: ConnectionFactory,
      sql: String,
      lowerBound: Long,
      upperBound: Long,
      numPartitions: Int,
      mapRow: JFunction[ResultSet, T]): JavaRDD[T] = {

    val jdbcRDD = new JdbcRDD[T](
      sc.sc,
      () => connectionFactory.getConnection,
      sql,
      lowerBound,
      upperBound,
      numPartitions,
      (resultSet: ResultSet) => mapRow.call(resultSet))(fakeClassTag)

    new JavaRDD[T](jdbcRDD)(fakeClassTag)
  }

  /**
   * Create an RDD that executes a SQL query on a JDBC connection and reads results. Each row is
   * converted into a `Object` array. For usage example, see test case JavaAPISuite.testJavaJdbcRDD.
   *
   * @param connectionFactory a factory that returns an open Connection.
   *   The RDD takes care of closing the connection.
   * @param sql the text of the query.
   *   The query must contain two ? placeholders for parameters used to partition the results.
   *   For example,
   *   {{{
   *   select title, author from books where ? <= id and id <= ?
   *   }}}
   * @param lowerBound the minimum value of the first placeholder
   * @param upperBound the maximum value of the second placeholder
   *   The lower and upper bounds are inclusive.
   * @param numPartitions the number of partitions.
   *   Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2,
   *   the query would be executed twice, once with (1, 10) and once with (11, 20)
   */
  def create(
      sc: JavaSparkContext,
      connectionFactory: ConnectionFactory,
      sql: String,
      lowerBound: Long,
      upperBound: Long,
      numPartitions: Int): JavaRDD[Array[Object]] = {

    val mapRow = new JFunction[ResultSet, Array[Object]] {
      override def call(resultSet: ResultSet): Array[Object] = {
        resultSetToObjectArray(resultSet)
      }
    }

    create(sc, connectionFactory, sql, lowerBound, upperBound, numPartitions, mapRow)
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞