spark JdbcRDD 源码
spark JdbcRDD 代码
文件路径:/core/src/main/scala/org/apache/spark/rdd/JdbcRDD.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.rdd
import java.sql.{Connection, ResultSet}
import scala.reflect.ClassTag
import org.apache.spark.{Partition, SparkContext, TaskContext}
import org.apache.spark.api.java.{JavaRDD, JavaSparkContext}
import org.apache.spark.api.java.JavaSparkContext.fakeClassTag
import org.apache.spark.api.java.function.{Function => JFunction}
import org.apache.spark.internal.Logging
import org.apache.spark.util.NextIterator
private[spark] class JdbcPartition(idx: Int, val lower: Long, val upper: Long) extends Partition {
override def index: Int = idx
}
/**
* An RDD that executes a SQL query on a JDBC connection and reads results.
* For usage example, see test case JdbcRDDSuite.
*
* @param getConnection a function that returns an open Connection.
* The RDD takes care of closing the connection.
* @param sql the text of the query.
* The query must contain two ? placeholders for parameters used to partition the results.
* For example,
* {{{
* select title, author from books where ? <= id and id <= ?
* }}}
* @param lowerBound the minimum value of the first placeholder
* @param upperBound the maximum value of the second placeholder
* The lower and upper bounds are inclusive.
* @param numPartitions the number of partitions.
* Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2,
* the query would be executed twice, once with (1, 10) and once with (11, 20)
* @param mapRow a function from a ResultSet to a single row of the desired result type(s).
* This should only call getInt, getString, etc; the RDD takes care of calling next.
* The default maps a ResultSet to an array of Object.
*/
class JdbcRDD[T: ClassTag](
sc: SparkContext,
getConnection: () => Connection,
sql: String,
lowerBound: Long,
upperBound: Long,
numPartitions: Int,
mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)
extends RDD[T](sc, Nil) with Logging {
override def getPartitions: Array[Partition] = {
// bounds are inclusive, hence the + 1 here and - 1 on end
val length = BigInt(1) + upperBound - lowerBound
(0 until numPartitions).map { i =>
val start = lowerBound + ((i * length) / numPartitions)
val end = lowerBound + (((i + 1) * length) / numPartitions) - 1
new JdbcPartition(i, start.toLong, end.toLong)
}.toArray
}
override def compute(thePart: Partition, context: TaskContext): Iterator[T] = new NextIterator[T]
{
context.addTaskCompletionListener[Unit]{ context => closeIfNeeded() }
val part = thePart.asInstanceOf[JdbcPartition]
val conn = getConnection()
val stmt = conn.prepareStatement(sql, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)
val url = conn.getMetaData.getURL
if (url.startsWith("jdbc:mysql:")) {
// setFetchSize(Integer.MIN_VALUE) is a mysql driver specific way to force
// streaming results, rather than pulling entire resultset into memory.
// See the below URL
// dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-implementation-notes.html
stmt.setFetchSize(Integer.MIN_VALUE)
} else {
stmt.setFetchSize(100)
}
logInfo(s"statement fetch size set to: ${stmt.getFetchSize}")
stmt.setLong(1, part.lower)
stmt.setLong(2, part.upper)
val rs = stmt.executeQuery()
override def getNext(): T = {
if (rs.next()) {
mapRow(rs)
} else {
finished = true
null.asInstanceOf[T]
}
}
override def close(): Unit = {
try {
if (null != rs) {
rs.close()
}
} catch {
case e: Exception => logWarning("Exception closing resultset", e)
}
try {
if (null != stmt) {
stmt.close()
}
} catch {
case e: Exception => logWarning("Exception closing statement", e)
}
try {
if (null != conn) {
conn.close()
}
logInfo("closed connection")
} catch {
case e: Exception => logWarning("Exception closing connection", e)
}
}
}
}
object JdbcRDD {
def resultSetToObjectArray(rs: ResultSet): Array[Object] = {
Array.tabulate[Object](rs.getMetaData.getColumnCount)(i => rs.getObject(i + 1))
}
trait ConnectionFactory extends Serializable {
@throws[Exception]
def getConnection: Connection
}
/**
* Create an RDD that executes a SQL query on a JDBC connection and reads results.
* For usage example, see test case JavaAPISuite.testJavaJdbcRDD.
*
* @param connectionFactory a factory that returns an open Connection.
* The RDD takes care of closing the connection.
* @param sql the text of the query.
* The query must contain two ? placeholders for parameters used to partition the results.
* For example,
* {{{
* select title, author from books where ? <= id and id <= ?
* }}}
* @param lowerBound the minimum value of the first placeholder
* @param upperBound the maximum value of the second placeholder
* The lower and upper bounds are inclusive.
* @param numPartitions the number of partitions.
* Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2,
* the query would be executed twice, once with (1, 10) and once with (11, 20)
* @param mapRow a function from a ResultSet to a single row of the desired result type(s).
* This should only call getInt, getString, etc; the RDD takes care of calling next.
* The default maps a ResultSet to an array of Object.
*/
def create[T](
sc: JavaSparkContext,
connectionFactory: ConnectionFactory,
sql: String,
lowerBound: Long,
upperBound: Long,
numPartitions: Int,
mapRow: JFunction[ResultSet, T]): JavaRDD[T] = {
val jdbcRDD = new JdbcRDD[T](
sc.sc,
() => connectionFactory.getConnection,
sql,
lowerBound,
upperBound,
numPartitions,
(resultSet: ResultSet) => mapRow.call(resultSet))(fakeClassTag)
new JavaRDD[T](jdbcRDD)(fakeClassTag)
}
/**
* Create an RDD that executes a SQL query on a JDBC connection and reads results. Each row is
* converted into a `Object` array. For usage example, see test case JavaAPISuite.testJavaJdbcRDD.
*
* @param connectionFactory a factory that returns an open Connection.
* The RDD takes care of closing the connection.
* @param sql the text of the query.
* The query must contain two ? placeholders for parameters used to partition the results.
* For example,
* {{{
* select title, author from books where ? <= id and id <= ?
* }}}
* @param lowerBound the minimum value of the first placeholder
* @param upperBound the maximum value of the second placeholder
* The lower and upper bounds are inclusive.
* @param numPartitions the number of partitions.
* Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2,
* the query would be executed twice, once with (1, 10) and once with (11, 20)
*/
def create(
sc: JavaSparkContext,
connectionFactory: ConnectionFactory,
sql: String,
lowerBound: Long,
upperBound: Long,
numPartitions: Int): JavaRDD[Array[Object]] = {
val mapRow = new JFunction[ResultSet, Array[Object]] {
override def call(resultSet: ResultSet): Array[Object] = {
resultSetToObjectArray(resultSet)
}
}
create(sc, connectionFactory, sql, lowerBound, upperBound, numPartitions, mapRow)
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦