spark DataSourceUtils 源码

  • 2022-10-20
  • 浏览 (207)

spark DataSourceUtils 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/DataSourceUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources

import java.util.Locale

import scala.collection.JavaConverters._

import org.apache.hadoop.fs.Path
import org.json4s.NoTypeHints
import org.json4s.jackson.Serialization

import org.apache.spark.SparkUpgradeException
import org.apache.spark.sql.{SPARK_LEGACY_DATETIME_METADATA_KEY, SPARK_LEGACY_INT96_METADATA_KEY, SPARK_TIMEZONE_METADATA_KEY, SPARK_VERSION_METADATA_KEY}
import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogUtils}
import org.apache.spark.sql.catalyst.expressions.{AttributeReference, AttributeSet, Expression, ExpressionSet, PredicateHelper}
import org.apache.spark.sql.catalyst.util.RebaseDateTime
import org.apache.spark.sql.catalyst.util.RebaseDateTime.RebaseSpec
import org.apache.spark.sql.errors.{QueryCompilationErrors, QueryExecutionErrors}
import org.apache.spark.sql.execution.datasources.parquet.ParquetOptions
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.internal.SQLConf.LegacyBehaviorPolicy
import org.apache.spark.sql.sources.BaseRelation
import org.apache.spark.sql.types._
import org.apache.spark.sql.util.CaseInsensitiveStringMap
import org.apache.spark.util.Utils


object DataSourceUtils extends PredicateHelper {
  /**
   * The key to use for storing partitionBy columns as options.
   */
  val PARTITIONING_COLUMNS_KEY = "__partition_columns"

  /**
   * The key to use for specifying partition overwrite mode when
   * INSERT OVERWRITE a partitioned data source table.
   */
  val PARTITION_OVERWRITE_MODE = "partitionOverwriteMode"

  /**
   * Utility methods for converting partitionBy columns to options and back.
   */
  private implicit val formats = Serialization.formats(NoTypeHints)

  def encodePartitioningColumns(columns: Seq[String]): String = {
    Serialization.write(columns)
  }

  def decodePartitioningColumns(str: String): Seq[String] = {
    Serialization.read[Seq[String]](str)
  }

  /**
   * Verify if the field name is supported in datasource. This verification should be done
   * in a driver side.
   */
  def checkFieldNames(format: FileFormat, schema: StructType): Unit = {
    schema.foreach { field =>
      if (!format.supportFieldName(field.name)) {
        throw QueryCompilationErrors.columnNameContainsInvalidCharactersError(field.name)
      }
      field.dataType match {
        case s: StructType => checkFieldNames(format, s)
        case _ =>
      }
    }
  }

  /**
   * Verify if the schema is supported in datasource. This verification should be done
   * in a driver side.
   */
  def verifySchema(format: FileFormat, schema: StructType): Unit = {
    schema.foreach { field =>
      if (!format.supportDataType(field.dataType)) {
        throw QueryCompilationErrors.dataTypeUnsupportedByDataSourceError(format.toString, field)
      }
    }
  }

  // SPARK-24626: Metadata files and temporary files should not be
  // counted as data files, so that they shouldn't participate in tasks like
  // location size calculation.
  private[sql] def isDataPath(path: Path): Boolean = isDataFile(path.getName)

  private[sql] def isDataFile(fileName: String) =
    !(fileName.startsWith("_") || fileName.startsWith("."))

  /**
   * Returns if the given relation's V1 datasource provider supports nested predicate pushdown.
   */
  private[sql] def supportNestedPredicatePushdown(relation: BaseRelation): Boolean =
    relation match {
      case hs: HadoopFsRelation =>
        val supportedDatasources =
          Utils.stringToSeq(SQLConf.get.getConf(SQLConf.NESTED_PREDICATE_PUSHDOWN_FILE_SOURCE_LIST)
            .toLowerCase(Locale.ROOT))
        supportedDatasources.contains(hs.toString)
      case _ => false
    }

  private def getRebaseSpec(
      lookupFileMeta: String => String,
      modeByConfig: String,
      minVersion: String,
      metadataKey: String): RebaseSpec = {
    val policy = if (Utils.isTesting &&
      SQLConf.get.getConfString("spark.test.forceNoRebase", "") == "true") {
      LegacyBehaviorPolicy.CORRECTED
    } else {
      // If there is no version, we return the mode specified by the config.
      Option(lookupFileMeta(SPARK_VERSION_METADATA_KEY)).map { version =>
        // Files written by Spark 2.4 and earlier follow the legacy hybrid calendar and we need to
        // rebase the datetime values.
        // Files written by `minVersion` and latter may also need the rebase if they were written
        // with the "LEGACY" rebase mode.
        if (version < minVersion || lookupFileMeta(metadataKey) != null) {
          LegacyBehaviorPolicy.LEGACY
        } else {
          LegacyBehaviorPolicy.CORRECTED
        }
      }.getOrElse(LegacyBehaviorPolicy.withName(modeByConfig))
    }
    policy match {
      case LegacyBehaviorPolicy.LEGACY =>
        RebaseSpec(LegacyBehaviorPolicy.LEGACY, Option(lookupFileMeta(SPARK_TIMEZONE_METADATA_KEY)))
      case _ => RebaseSpec(policy)
    }
  }

  def datetimeRebaseSpec(
      lookupFileMeta: String => String,
      modeByConfig: String): RebaseSpec = {
    getRebaseSpec(
      lookupFileMeta,
      modeByConfig,
      "3.0.0",
      SPARK_LEGACY_DATETIME_METADATA_KEY)
  }

  def int96RebaseSpec(
      lookupFileMeta: String => String,
      modeByConfig: String): RebaseSpec = {
    getRebaseSpec(
      lookupFileMeta,
      modeByConfig,
      "3.1.0",
      SPARK_LEGACY_INT96_METADATA_KEY)
  }

  def newRebaseExceptionInRead(format: String): SparkUpgradeException = {
    val (config, option) = format match {
      case "Parquet INT96" =>
        (SQLConf.PARQUET_INT96_REBASE_MODE_IN_READ.key, ParquetOptions.INT96_REBASE_MODE)
      case "Parquet" =>
        (SQLConf.PARQUET_REBASE_MODE_IN_READ.key, ParquetOptions.DATETIME_REBASE_MODE)
      case "Avro" =>
        (SQLConf.AVRO_REBASE_MODE_IN_READ.key, "datetimeRebaseMode")
      case _ => throw new IllegalStateException(s"Unrecognized format $format.")
    }
    QueryExecutionErrors.sparkUpgradeInReadingDatesError(format, config, option)
  }

  def newRebaseExceptionInWrite(format: String): SparkUpgradeException = {
    val config = format match {
      case "Parquet INT96" => SQLConf.PARQUET_INT96_REBASE_MODE_IN_WRITE.key
      case "Parquet" => SQLConf.PARQUET_REBASE_MODE_IN_WRITE.key
      case "Avro" => SQLConf.AVRO_REBASE_MODE_IN_WRITE.key
      case _ => throw new IllegalStateException(s"Unrecognized format $format.")
    }
    QueryExecutionErrors.sparkUpgradeInWritingDatesError(format, config)
  }

  def createDateRebaseFuncInRead(
      rebaseMode: LegacyBehaviorPolicy.Value,
      format: String): Int => Int = rebaseMode match {
    case LegacyBehaviorPolicy.EXCEPTION => days: Int =>
      if (days < RebaseDateTime.lastSwitchJulianDay) {
        throw DataSourceUtils.newRebaseExceptionInRead(format)
      }
      days
    case LegacyBehaviorPolicy.LEGACY => RebaseDateTime.rebaseJulianToGregorianDays
    case LegacyBehaviorPolicy.CORRECTED => identity[Int]
  }

  def createDateRebaseFuncInWrite(
      rebaseMode: LegacyBehaviorPolicy.Value,
      format: String): Int => Int = rebaseMode match {
    case LegacyBehaviorPolicy.EXCEPTION => days: Int =>
      if (days < RebaseDateTime.lastSwitchGregorianDay) {
        throw DataSourceUtils.newRebaseExceptionInWrite(format)
      }
      days
    case LegacyBehaviorPolicy.LEGACY => RebaseDateTime.rebaseGregorianToJulianDays
    case LegacyBehaviorPolicy.CORRECTED => identity[Int]
  }

  def createTimestampRebaseFuncInRead(
      rebaseSpec: RebaseSpec,
      format: String): Long => Long = rebaseSpec.mode match {
    case LegacyBehaviorPolicy.EXCEPTION => micros: Long =>
      if (micros < RebaseDateTime.lastSwitchJulianTs) {
        throw DataSourceUtils.newRebaseExceptionInRead(format)
      }
      micros
    case LegacyBehaviorPolicy.LEGACY =>
      RebaseDateTime.rebaseJulianToGregorianMicros(rebaseSpec.timeZone, _)
    case LegacyBehaviorPolicy.CORRECTED => identity[Long]
  }

  def createTimestampRebaseFuncInWrite(
      rebaseMode: LegacyBehaviorPolicy.Value,
      format: String): Long => Long = rebaseMode match {
    case LegacyBehaviorPolicy.EXCEPTION => micros: Long =>
      if (micros < RebaseDateTime.lastSwitchGregorianTs) {
        throw DataSourceUtils.newRebaseExceptionInWrite(format)
      }
      micros
    case LegacyBehaviorPolicy.LEGACY =>
      val timeZone = SQLConf.get.sessionLocalTimeZone
      RebaseDateTime.rebaseGregorianToJulianMicros(timeZone, _)
    case LegacyBehaviorPolicy.CORRECTED => identity[Long]
  }

  def generateDatasourceOptions(
      extraOptions: CaseInsensitiveStringMap, table: CatalogTable): Map[String, String] = {
    val pathOption = table.storage.locationUri.map("path" -> CatalogUtils.URIToString(_))
    val options = table.storage.properties ++ pathOption
    if (!SQLConf.get.getConf(SQLConf.LEGACY_EXTRA_OPTIONS_BEHAVIOR)) {
      // Check the same key with different values
      table.storage.properties.foreach { case (k, v) =>
        if (extraOptions.containsKey(k) && extraOptions.get(k) != v) {
          throw QueryCompilationErrors.failToResolveDataSourceForTableError(table, k)
        }
      }
      // To keep the original key from table properties, here we filter all case insensitive
      // duplicate keys out from extra options.
      val lowerCasedDuplicatedKeys =
        table.storage.properties.keySet.map(_.toLowerCase(Locale.ROOT))
          .intersect(extraOptions.keySet.asScala)
      extraOptions.asCaseSensitiveMap().asScala.filterNot {
        case (k, _) => lowerCasedDuplicatedKeys.contains(k.toLowerCase(Locale.ROOT))
      }.toMap ++ options
    } else {
      options
    }
  }

  def getPartitionFiltersAndDataFilters(
      partitionSchema: StructType,
      normalizedFilters: Seq[Expression]): (Seq[Expression], Seq[Expression]) = {
    val partitionColumns = normalizedFilters.flatMap { expr =>
      expr.collect {
        case attr: AttributeReference if partitionSchema.names.contains(attr.name) =>
          attr
      }
    }
    val partitionSet = AttributeSet(partitionColumns)
    val (partitionFilters, dataFilters) = normalizedFilters.partition(f =>
      f.references.subsetOf(partitionSet)
    )
    val extraPartitionFilter =
      dataFilters.flatMap(extractPredicatesWithinOutputSet(_, partitionSet))
    (ExpressionSet(partitionFilters ++ extraPartitionFilter).toSeq, dataFilters)
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatePushDownUtils 源码

spark ApplyCharTypePadding 源码

spark BasicWriteStatsTracker 源码

spark BucketingUtils 源码

spark CatalogFileIndex 源码

spark CodecStreams 源码

spark DataSource 源码

spark DataSourceStrategy 源码

spark DaysWritable 源码

spark FallBackFileSourceV2 源码

0  赞