spark BucketingUtils 源码

  • 2022-10-20
  • 浏览 (211)

spark BucketingUtils 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/BucketingUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources

import org.apache.spark.sql.catalyst.expressions.{Attribute, SpecificInternalRow, UnsafeProjection}
import org.apache.spark.sql.catalyst.plans.physical.HashPartitioning

object BucketingUtils {
  // The file name of bucketed data should have 3 parts:
  //   1. some other information in the head of file name
  //   2. bucket id part, some numbers, starts with "_"
  //      * The other-information part may use `-` as separator and may have numbers at the end,
  //        e.g. a normal parquet file without bucketing may have name:
  //        part-r-00000-2dd664f9-d2c4-4ffe-878f-431234567891.gz.parquet, and we will mistakenly
  //        treat `431234567891` as bucket id. So here we pick `_` as separator.
  //   3. optional file extension part, in the tail of file name, starts with `.`
  // An example of bucketed parquet file name with bucket id 3:
  //   part-r-00000-2dd664f9-d2c4-4ffe-878f-c6c70c1fb0cb_00003.gz.parquet
  private val bucketedFileName = """.*_(\d+)(?:\..*)?$""".r

  // The reserved option name for data source to write Hive-compatible bucketed table
  val optionForHiveCompatibleBucketWrite = "__hive_compatible_bucketed_table_insertion__"

  def getBucketId(fileName: String): Option[Int] = fileName match {
    case bucketedFileName(bucketId) => Some(bucketId.toInt)
    case other => None
  }

  // Given bucketColumn, numBuckets and value, returns the corresponding bucketId
  def getBucketIdFromValue(bucketColumn: Attribute, numBuckets: Int, value: Any): Int = {
    val mutableInternalRow = new SpecificInternalRow(Seq(bucketColumn.dataType))
    mutableInternalRow.update(0, value)

    val bucketIdGenerator = UnsafeProjection.create(
      HashPartitioning(Seq(bucketColumn), numBuckets).partitionIdExpression :: Nil,
      bucketColumn :: Nil)
    bucketIdGenerator(mutableInternalRow).getInt(0)
  }

  def bucketIdToString(id: Int): String = f"_$id%05d"
}

相关信息

spark 源码目录

相关文章

spark AggregatePushDownUtils 源码

spark ApplyCharTypePadding 源码

spark BasicWriteStatsTracker 源码

spark CatalogFileIndex 源码

spark CodecStreams 源码

spark DataSource 源码

spark DataSourceStrategy 源码

spark DataSourceUtils 源码

spark DaysWritable 源码

spark FallBackFileSourceV2 源码

0  赞