spark ApplyCharTypePadding 源码

  • 2022-10-20
  • 浏览 (261)

spark ApplyCharTypePadding 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/ApplyCharTypePadding.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources

import org.apache.spark.sql.catalyst.catalog.HiveTableRelation
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, Project}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.{BINARY_COMPARISON, IN}
import org.apache.spark.sql.catalyst.util.CharVarcharUtils
import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Relation
import org.apache.spark.sql.types.{CharType, Metadata, StringType}
import org.apache.spark.unsafe.types.UTF8String

/**
 * This rule performs string padding for char type.
 *
 * When reading values from column/field of type CHAR(N), right-pad the values to length N, if the
 * read-side padding config is turned on.
 *
 * When comparing char type column/field with string literal or char type column/field,
 * right-pad the shorter one to the longer length.
 */
object ApplyCharTypePadding extends Rule[LogicalPlan] {

  object AttrOrOuterRef {
    def unapply(e: Expression): Option[Attribute] = e match {
      case a: Attribute => Some(a)
      case OuterReference(a: Attribute) => Some(a)
      case _ => None
    }
  }

  override def apply(plan: LogicalPlan): LogicalPlan = {
    if (conf.charVarcharAsString) {
      return plan
    }

    if (conf.readSideCharPadding) {
      val newPlan = plan.resolveOperatorsUpWithNewOutput {
        case r: LogicalRelation =>
          readSidePadding(r, () =>
            r.copy(output = r.output.map(CharVarcharUtils.cleanAttrMetadata)))
        case r: DataSourceV2Relation =>
          readSidePadding(r, () =>
            r.copy(output = r.output.map(CharVarcharUtils.cleanAttrMetadata)))
        case r: HiveTableRelation =>
          readSidePadding(r, () => {
            val cleanedDataCols = r.dataCols.map(CharVarcharUtils.cleanAttrMetadata)
            val cleanedPartCols = r.partitionCols.map(CharVarcharUtils.cleanAttrMetadata)
            r.copy(dataCols = cleanedDataCols, partitionCols = cleanedPartCols)
          })
      }
      paddingForStringComparison(newPlan)
    } else {
      paddingForStringComparison(plan)
    }
  }

  private def readSidePadding(
      relation: LogicalPlan,
      cleanedRelation: () => LogicalPlan)
  : (LogicalPlan, Seq[(Attribute, Attribute)]) = {
    val projectList = relation.output.map { attr =>
      CharVarcharUtils.addPaddingForScan(attr) match {
        case ne: NamedExpression => ne
        case other => Alias(other, attr.name)(explicitMetadata = Some(attr.metadata))
      }
    }
    if (projectList == relation.output) {
      relation -> Nil
    } else {
      val newPlan = Project(projectList, cleanedRelation())
      newPlan -> relation.output.zip(newPlan.output)
    }
  }

  private def paddingForStringComparison(plan: LogicalPlan): LogicalPlan = {
    plan.resolveOperatorsUpWithPruning(_.containsAnyPattern(BINARY_COMPARISON, IN)) {
      case operator => operator.transformExpressionsUpWithPruning(
        _.containsAnyPattern(BINARY_COMPARISON, IN)) {
        case e if !e.childrenResolved => e

        // String literal is treated as char type when it's compared to a char type column.
        // We should pad the shorter one to the longer length.
        case b @ BinaryComparison(e @ AttrOrOuterRef(attr), lit) if lit.foldable =>
          padAttrLitCmp(e, attr.metadata, lit).map { newChildren =>
            b.withNewChildren(newChildren)
          }.getOrElse(b)

        case b @ BinaryComparison(lit, e @ AttrOrOuterRef(attr)) if lit.foldable =>
          padAttrLitCmp(e, attr.metadata, lit).map { newChildren =>
            b.withNewChildren(newChildren.reverse)
          }.getOrElse(b)

        case i @ In(e @ AttrOrOuterRef(attr), list)
          if attr.dataType == StringType && list.forall(_.foldable) =>
          CharVarcharUtils.getRawType(attr.metadata).flatMap {
            case CharType(length) =>
              val (nulls, literalChars) =
                list.map(_.eval().asInstanceOf[UTF8String]).partition(_ == null)
              val literalCharLengths = literalChars.map(_.numChars())
              val targetLen = (length +: literalCharLengths).max
              Some(i.copy(
                value = addPadding(e, length, targetLen),
                list = list.zip(literalCharLengths).map {
                  case (lit, charLength) => addPadding(lit, charLength, targetLen)
                } ++ nulls.map(Literal.create(_, StringType))))
            case _ => None
          }.getOrElse(i)

        // For char type column or inner field comparison, pad the shorter one to the longer length.
        case b @ BinaryComparison(e1 @ AttrOrOuterRef(left), e2 @ AttrOrOuterRef(right))
          // For the same attribute, they must be the same length and no padding is needed.
          if !left.semanticEquals(right) =>
          val outerRefs = (e1, e2) match {
            case (_: OuterReference, _: OuterReference) => Seq(left, right)
            case (_: OuterReference, _) => Seq(left)
            case (_, _: OuterReference) => Seq(right)
            case _ => Nil
          }
          val newChildren = CharVarcharUtils.addPaddingInStringComparison(Seq(left, right))
          if (outerRefs.nonEmpty) {
            b.withNewChildren(newChildren.map(_.transform {
              case a: Attribute if outerRefs.exists(_.semanticEquals(a)) => OuterReference(a)
            }))
          } else {
            b.withNewChildren(newChildren)
          }

        case i @ In(e @ AttrOrOuterRef(attr), list) if list.forall(_.isInstanceOf[Attribute]) =>
          val newChildren = CharVarcharUtils.addPaddingInStringComparison(
            attr +: list.map(_.asInstanceOf[Attribute]))
          if (e.isInstanceOf[OuterReference]) {
            i.copy(
              value = newChildren.head.transform {
                case a: Attribute if a.semanticEquals(attr) => OuterReference(a)
              },
              list = newChildren.tail)
          } else {
            i.copy(value = newChildren.head, list = newChildren.tail)
          }
      }
    }
  }

  private def padAttrLitCmp(
      expr: Expression,
      metadata: Metadata,
      lit: Expression): Option[Seq[Expression]] = {
    if (expr.dataType == StringType) {
      CharVarcharUtils.getRawType(metadata).flatMap {
        case CharType(length) =>
          val str = lit.eval().asInstanceOf[UTF8String]
          if (str == null) {
            None
          } else {
            val stringLitLen = str.numChars()
            if (length < stringLitLen) {
              Some(Seq(StringRPad(expr, Literal(stringLitLen)), lit))
            } else if (length > stringLitLen) {
              Some(Seq(expr, StringRPad(lit, Literal(length))))
            } else {
              None
            }
          }
        case _ => None
      }
    } else {
      None
    }
  }

  private def addPadding(expr: Expression, charLength: Int, targetLength: Int): Expression = {
    if (targetLength > charLength) StringRPad(expr, Literal(targetLength)) else expr
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatePushDownUtils 源码

spark BasicWriteStatsTracker 源码

spark BucketingUtils 源码

spark CatalogFileIndex 源码

spark CodecStreams 源码

spark DataSource 源码

spark DataSourceStrategy 源码

spark DataSourceUtils 源码

spark DaysWritable 源码

spark FallBackFileSourceV2 源码

0  赞