spark KafkaStreamingWrite 源码

  • 2022-10-20
  • 浏览 (316)

spark KafkaStreamingWrite 代码

文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaStreamingWrite.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.kafka010

import java.{util => ju}

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.connector.write.{DataWriter, PhysicalWriteInfo, WriterCommitMessage}
import org.apache.spark.sql.connector.write.streaming.{StreamingDataWriterFactory, StreamingWrite}
import org.apache.spark.sql.kafka010.KafkaWriter.validateQuery
import org.apache.spark.sql.types.StructType

/**
 * A [[StreamingWrite]] for Kafka writing. Responsible for generating the writer factory.
 *
 * @param topic The topic this writer is responsible for. If None, topic will be inferred from
 *              a `topic` field in the incoming data.
 * @param producerParams Parameters for Kafka producers in each task.
 * @param schema The schema of the input data.
 */
private[kafka010] class KafkaStreamingWrite(
    topic: Option[String],
    producerParams: ju.Map[String, Object],
    schema: StructType)
  extends StreamingWrite {

  validateQuery(schema.toAttributes, producerParams, topic)

  override def createStreamingWriterFactory(
      info: PhysicalWriteInfo): KafkaStreamWriterFactory =
    KafkaStreamWriterFactory(topic, producerParams, schema)

  override def commit(epochId: Long, messages: Array[WriterCommitMessage]): Unit = {}
  override def abort(epochId: Long, messages: Array[WriterCommitMessage]): Unit = {}
}

/**
 * A [[StreamingDataWriterFactory]] for Kafka writing. Will be serialized and sent to executors to
 * generate the per-task data writers.
 * @param topic The topic that should be written to. If None, topic will be inferred from
 *              a `topic` field in the incoming data.
 * @param producerParams Parameters for Kafka producers in each task.
 * @param schema The schema of the input data.
 */
private case class KafkaStreamWriterFactory(
    topic: Option[String],
    producerParams: ju.Map[String, Object],
    schema: StructType)
  extends StreamingDataWriterFactory {

  override def createWriter(
      partitionId: Int,
      taskId: Long,
      epochId: Long): DataWriter[InternalRow] = {
    new KafkaDataWriter(topic, producerParams, schema.toAttributes)
  }
}

相关信息

spark 源码目录

相关文章

spark ConsumerStrategy 源码

spark JsonUtils 源码

spark KafkaBatch 源码

spark KafkaBatchPartitionReader 源码

spark KafkaBatchWrite 源码

spark KafkaContinuousStream 源码

spark KafkaDataWriter 源码

spark KafkaMicroBatchStream 源码

spark KafkaOffsetRangeCalculator 源码

spark KafkaOffsetRangeLimit 源码

0  赞