spark KafkaBatchWrite 源码
spark KafkaBatchWrite 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaBatchWrite.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.connector.write.{BatchWrite, DataWriter, DataWriterFactory, PhysicalWriteInfo, WriterCommitMessage}
import org.apache.spark.sql.kafka010.KafkaWriter.validateQuery
import org.apache.spark.sql.types.StructType
/**
* A [[BatchWrite]] for Kafka writing. Responsible for generating the writer factory.
*
* @param topic The topic this writer is responsible for. If None, topic will be inferred from
* a `topic` field in the incoming data.
* @param producerParams Parameters for Kafka producers in each task.
* @param schema The schema of the input data.
*/
private[kafka010] class KafkaBatchWrite(
topic: Option[String],
producerParams: ju.Map[String, Object],
schema: StructType)
extends BatchWrite {
validateQuery(schema.toAttributes, producerParams, topic)
override def createBatchWriterFactory(info: PhysicalWriteInfo): KafkaBatchWriterFactory =
KafkaBatchWriterFactory(topic, producerParams, schema)
override def commit(messages: Array[WriterCommitMessage]): Unit = {}
override def abort(messages: Array[WriterCommitMessage]): Unit = {}
}
/**
* A [[DataWriterFactory]] for Kafka writing. Will be serialized and sent to executors to
* generate the per-task data writers.
* @param topic The topic that should be written to. If None, topic will be inferred from
* a `topic` field in the incoming data.
* @param producerParams Parameters for Kafka producers in each task.
* @param schema The schema of the input data.
*/
private case class KafkaBatchWriterFactory(
topic: Option[String],
producerParams: ju.Map[String, Object],
schema: StructType)
extends DataWriterFactory {
override def createWriter(partitionId: Int, taskId: Long): DataWriter[InternalRow] = {
new KafkaDataWriter(topic, producerParams, schema.toAttributes)
}
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
spark KafkaOffsetRangeCalculator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦