spark KafkaBatch 源码
spark KafkaBatch 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaBatch.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import org.apache.spark.SparkEnv
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.Network.NETWORK_TIMEOUT
import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap
import org.apache.spark.sql.connector.read.{Batch, InputPartition, PartitionReaderFactory}
private[kafka010] class KafkaBatch(
strategy: ConsumerStrategy,
sourceOptions: CaseInsensitiveMap[String],
specifiedKafkaParams: Map[String, String],
failOnDataLoss: Boolean,
startingOffsets: KafkaOffsetRangeLimit,
endingOffsets: KafkaOffsetRangeLimit,
includeHeaders: Boolean)
extends Batch with Logging {
assert(startingOffsets != LatestOffsetRangeLimit,
"Starting offset not allowed to be set to latest offsets.")
assert(endingOffsets != EarliestOffsetRangeLimit,
"Ending offset not allowed to be set to earliest offsets.")
private[kafka010] val pollTimeoutMs = sourceOptions.getOrElse(
KafkaSourceProvider.CONSUMER_POLL_TIMEOUT,
(SparkEnv.get.conf.get(NETWORK_TIMEOUT) * 1000L).toString
).toLong
override def planInputPartitions(): Array[InputPartition] = {
// Each running query should use its own group id. Otherwise, the query may be only assigned
// partial data since Kafka will assign partitions to multiple consumers having the same group
// id. Hence, we should generate a unique id for each query.
val uniqueGroupId = KafkaSourceProvider.batchUniqueGroupId(sourceOptions)
val kafkaOffsetReader = KafkaOffsetReader.build(
strategy,
KafkaSourceProvider.kafkaParamsForDriver(specifiedKafkaParams),
sourceOptions,
driverGroupIdPrefix = s"$uniqueGroupId-driver")
// Leverage the KafkaReader to obtain the relevant partition offsets
val offsetRanges: Seq[KafkaOffsetRange] = try {
kafkaOffsetReader.getOffsetRangesFromUnresolvedOffsets(startingOffsets, endingOffsets)
} finally {
kafkaOffsetReader.close()
}
val executorKafkaParams =
KafkaSourceProvider.kafkaParamsForExecutors(specifiedKafkaParams, uniqueGroupId)
offsetRanges.map { range =>
new KafkaBatchInputPartition(
range, executorKafkaParams, pollTimeoutMs, failOnDataLoss, includeHeaders)
}.toArray
}
override def createReaderFactory(): PartitionReaderFactory = {
KafkaBatchReaderFactory
}
override def toString: String =
s"KafkaBatch(strategy=$strategy, start=$startingOffsets, end=$endingOffsets)"
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
spark KafkaOffsetRangeCalculator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦