spark KafkaOffsetRangeCalculator 源码

  • 2022-10-20
  • 浏览 (342)

spark KafkaOffsetRangeCalculator 代码

文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaOffsetRangeCalculator.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.kafka010

import org.apache.kafka.common.TopicPartition

import org.apache.spark.sql.util.CaseInsensitiveStringMap


/**
 * Class to calculate offset ranges to process based on the from and until offsets, and
 * the configured `minPartitions`.
 */
private[kafka010] class KafkaOffsetRangeCalculator(val minPartitions: Option[Int]) {
  require(minPartitions.isEmpty || minPartitions.get > 0)

  /**
   * Calculate the offset ranges that we are going to process this batch. If `minPartitions`
   * is not set or is set less than or equal the number of `topicPartitions` that we're going to
   * consume, then we fall back to a 1-1 mapping of Spark tasks to Kafka partitions. If
   * `minPartitions` is set higher than the number of our `topicPartitions`, then we will split up
   * the read tasks of the skewed partitions to multiple Spark tasks.
   * The number of Spark tasks will be *approximately* `minPartitions`. It can be less or more
   * depending on rounding errors or Kafka partitions that didn't receive any new data.
   *
   * Empty (`KafkaOffsetRange.size == 0`) or invalid (`KafkaOffsetRange.size < 0`) ranges  will be
   * dropped.
   */
  def getRanges(
      ranges: Seq[KafkaOffsetRange],
      executorLocations: Seq[String] = Seq.empty): Seq[KafkaOffsetRange] = {
    val offsetRanges = ranges.filter(_.size > 0)

    // If minPartitions not set or there are enough partitions to satisfy minPartitions
    if (minPartitions.isEmpty || offsetRanges.size >= minPartitions.get) {
      // Assign preferred executor locations to each range such that the same topic-partition is
      // preferentially read from the same executor and the KafkaConsumer can be reused.
      offsetRanges.map { range =>
        range.copy(preferredLoc = getLocation(range.topicPartition, executorLocations))
      }
    } else {

      // Splits offset ranges with relatively large amount of data to smaller ones.
      val totalSize = offsetRanges.map(_.size).sum

      // First distinguish between any small (i.e. unsplit) ranges and large (i.e. split) ranges,
      // in order to exclude the contents of unsplit ranges from the proportional math applied to
      // split ranges
      val unsplitRanges = offsetRanges.filter { range =>
        getPartCount(range.size, totalSize, minPartitions.get) == 1
      }

      val unsplitRangeTotalSize = unsplitRanges.map(_.size).sum
      val splitRangeTotalSize = totalSize - unsplitRangeTotalSize
      val unsplitRangeTopicPartitions = unsplitRanges.map(_.topicPartition).toSet
      val splitRangeMinPartitions = math.max(minPartitions.get - unsplitRanges.size, 1)

      // Now we can apply the main calculation logic
      offsetRanges.flatMap { range =>
        val tp = range.topicPartition
        val size = range.size
        // number of partitions to divvy up this topic partition to
        val parts = if (unsplitRangeTopicPartitions.contains(tp)) {
          1
        } else {
          getPartCount(size, splitRangeTotalSize, splitRangeMinPartitions)
        }
        var remaining = size
        var startOffset = range.fromOffset
        (0 until parts).map { part =>
          // Fine to do integer division. Last partition will consume all the round off errors
          val thisPartition = remaining / (parts - part)
          remaining -= thisPartition
          val endOffset = math.min(startOffset + thisPartition, range.untilOffset)
          val offsetRange = KafkaOffsetRange(tp, startOffset, endOffset, None)
          startOffset = endOffset
          offsetRange
        }
      }.filter(_.size > 0)
    }
  }

  private def getPartCount(size: Long, totalSize: Long, minParts: Int): Int = {
    math.max(math.round(size.toDouble / totalSize * minParts), 1).toInt
  }

  private def getLocation(tp: TopicPartition, executorLocations: Seq[String]): Option[String] = {
    def floorMod(a: Long, b: Int): Int = ((a % b).toInt + b) % b

    val numExecutors = executorLocations.length
    if (numExecutors > 0) {
      // This allows cached KafkaConsumers in the executors to be re-used to read the same
      // partition in every batch.
      Some(executorLocations(floorMod(tp.hashCode, numExecutors)))
    } else None
  }
}

private[kafka010] object KafkaOffsetRangeCalculator {

  def apply(options: CaseInsensitiveStringMap): KafkaOffsetRangeCalculator = {
    val optionalValue = Option(options.get(KafkaSourceProvider.MIN_PARTITIONS_OPTION_KEY))
      .map(_.toInt)
    new KafkaOffsetRangeCalculator(optionalValue)
  }
}

private[kafka010] case class KafkaOffsetRange(
    topicPartition: TopicPartition,
    fromOffset: Long,
    untilOffset: Long,
    preferredLoc: Option[String] = None) {
  def topic: String = topicPartition.topic
  def partition: Int = topicPartition.partition
  /**
   * The estimated size of messages in the range. It may be different than the real number of
   * messages due to log compaction or transaction metadata. It should not be used to provide
   * answers directly.
   */
  def size: Long = untilOffset - fromOffset
}

相关信息

spark 源码目录

相关文章

spark ConsumerStrategy 源码

spark JsonUtils 源码

spark KafkaBatch 源码

spark KafkaBatchPartitionReader 源码

spark KafkaBatchWrite 源码

spark KafkaContinuousStream 源码

spark KafkaDataWriter 源码

spark KafkaMicroBatchStream 源码

spark KafkaOffsetRangeLimit 源码

spark KafkaOffsetReader 源码

0  赞