spark KafkaOffsetRangeCalculator 源码
spark KafkaOffsetRangeCalculator 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaOffsetRangeCalculator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import org.apache.kafka.common.TopicPartition
import org.apache.spark.sql.util.CaseInsensitiveStringMap
/**
* Class to calculate offset ranges to process based on the from and until offsets, and
* the configured `minPartitions`.
*/
private[kafka010] class KafkaOffsetRangeCalculator(val minPartitions: Option[Int]) {
require(minPartitions.isEmpty || minPartitions.get > 0)
/**
* Calculate the offset ranges that we are going to process this batch. If `minPartitions`
* is not set or is set less than or equal the number of `topicPartitions` that we're going to
* consume, then we fall back to a 1-1 mapping of Spark tasks to Kafka partitions. If
* `minPartitions` is set higher than the number of our `topicPartitions`, then we will split up
* the read tasks of the skewed partitions to multiple Spark tasks.
* The number of Spark tasks will be *approximately* `minPartitions`. It can be less or more
* depending on rounding errors or Kafka partitions that didn't receive any new data.
*
* Empty (`KafkaOffsetRange.size == 0`) or invalid (`KafkaOffsetRange.size < 0`) ranges will be
* dropped.
*/
def getRanges(
ranges: Seq[KafkaOffsetRange],
executorLocations: Seq[String] = Seq.empty): Seq[KafkaOffsetRange] = {
val offsetRanges = ranges.filter(_.size > 0)
// If minPartitions not set or there are enough partitions to satisfy minPartitions
if (minPartitions.isEmpty || offsetRanges.size >= minPartitions.get) {
// Assign preferred executor locations to each range such that the same topic-partition is
// preferentially read from the same executor and the KafkaConsumer can be reused.
offsetRanges.map { range =>
range.copy(preferredLoc = getLocation(range.topicPartition, executorLocations))
}
} else {
// Splits offset ranges with relatively large amount of data to smaller ones.
val totalSize = offsetRanges.map(_.size).sum
// First distinguish between any small (i.e. unsplit) ranges and large (i.e. split) ranges,
// in order to exclude the contents of unsplit ranges from the proportional math applied to
// split ranges
val unsplitRanges = offsetRanges.filter { range =>
getPartCount(range.size, totalSize, minPartitions.get) == 1
}
val unsplitRangeTotalSize = unsplitRanges.map(_.size).sum
val splitRangeTotalSize = totalSize - unsplitRangeTotalSize
val unsplitRangeTopicPartitions = unsplitRanges.map(_.topicPartition).toSet
val splitRangeMinPartitions = math.max(minPartitions.get - unsplitRanges.size, 1)
// Now we can apply the main calculation logic
offsetRanges.flatMap { range =>
val tp = range.topicPartition
val size = range.size
// number of partitions to divvy up this topic partition to
val parts = if (unsplitRangeTopicPartitions.contains(tp)) {
1
} else {
getPartCount(size, splitRangeTotalSize, splitRangeMinPartitions)
}
var remaining = size
var startOffset = range.fromOffset
(0 until parts).map { part =>
// Fine to do integer division. Last partition will consume all the round off errors
val thisPartition = remaining / (parts - part)
remaining -= thisPartition
val endOffset = math.min(startOffset + thisPartition, range.untilOffset)
val offsetRange = KafkaOffsetRange(tp, startOffset, endOffset, None)
startOffset = endOffset
offsetRange
}
}.filter(_.size > 0)
}
}
private def getPartCount(size: Long, totalSize: Long, minParts: Int): Int = {
math.max(math.round(size.toDouble / totalSize * minParts), 1).toInt
}
private def getLocation(tp: TopicPartition, executorLocations: Seq[String]): Option[String] = {
def floorMod(a: Long, b: Int): Int = ((a % b).toInt + b) % b
val numExecutors = executorLocations.length
if (numExecutors > 0) {
// This allows cached KafkaConsumers in the executors to be re-used to read the same
// partition in every batch.
Some(executorLocations(floorMod(tp.hashCode, numExecutors)))
} else None
}
}
private[kafka010] object KafkaOffsetRangeCalculator {
def apply(options: CaseInsensitiveStringMap): KafkaOffsetRangeCalculator = {
val optionalValue = Option(options.get(KafkaSourceProvider.MIN_PARTITIONS_OPTION_KEY))
.map(_.toInt)
new KafkaOffsetRangeCalculator(optionalValue)
}
}
private[kafka010] case class KafkaOffsetRange(
topicPartition: TopicPartition,
fromOffset: Long,
untilOffset: Long,
preferredLoc: Option[String] = None) {
def topic: String = topicPartition.topic
def partition: Int = topicPartition.partition
/**
* The estimated size of messages in the range. It may be different than the real number of
* messages due to log compaction or transaction metadata. It should not be used to provide
* answers directly.
*/
def size: Long = untilOffset - fromOffset
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦