spark KafkaMicroBatchStream 源码
spark KafkaMicroBatchStream 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaMicroBatchStream.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import java.util.Optional
import scala.collection.JavaConverters._
import org.apache.kafka.common.TopicPartition
import org.apache.spark.SparkEnv
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.Network.NETWORK_TIMEOUT
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.connector.read.{InputPartition, PartitionReaderFactory}
import org.apache.spark.sql.connector.read.streaming._
import org.apache.spark.sql.kafka010.KafkaSourceProvider._
import org.apache.spark.sql.kafka010.MockedSystemClock.currentMockSystemTime
import org.apache.spark.sql.util.CaseInsensitiveStringMap
import org.apache.spark.util.{Clock, ManualClock, SystemClock, UninterruptibleThread, Utils}
/**
* A [[MicroBatchStream]] that reads data from Kafka.
*
* The [[KafkaSourceOffset]] is the custom [[Offset]] defined for this source that contains
* a map of TopicPartition -> offset. Note that this offset is 1 + (available offset). For
* example if the last record in a Kafka topic "t", partition 2 is offset 5, then
* KafkaSourceOffset will contain TopicPartition("t", 2) -> 6. This is done keep it consistent
* with the semantics of `KafkaConsumer.position()`.
*
* Zero data lost is not guaranteed when topics are deleted. If zero data lost is critical, the user
* must make sure all messages in a topic have been processed when deleting a topic.
*
* There is a known issue caused by KAFKA-1894: the query using Kafka maybe cannot be stopped.
* To avoid this issue, you should make sure stopping the query before stopping the Kafka brokers
* and not use wrong broker addresses.
*/
private[kafka010] class KafkaMicroBatchStream(
private[kafka010] val kafkaOffsetReader: KafkaOffsetReader,
executorKafkaParams: ju.Map[String, Object],
options: CaseInsensitiveStringMap,
metadataPath: String,
startingOffsets: KafkaOffsetRangeLimit,
failOnDataLoss: Boolean)
extends SupportsTriggerAvailableNow with ReportsSourceMetrics with MicroBatchStream with Logging {
private[kafka010] val pollTimeoutMs = options.getLong(
KafkaSourceProvider.CONSUMER_POLL_TIMEOUT,
SparkEnv.get.conf.get(NETWORK_TIMEOUT) * 1000L)
private[kafka010] val maxOffsetsPerTrigger = Option(options.get(
KafkaSourceProvider.MAX_OFFSET_PER_TRIGGER)).map(_.toLong)
private[kafka010] val minOffsetPerTrigger = Option(options.get(
KafkaSourceProvider.MIN_OFFSET_PER_TRIGGER)).map(_.toLong)
private[kafka010] val maxTriggerDelayMs =
Utils.timeStringAsMs(Option(options.get(
KafkaSourceProvider.MAX_TRIGGER_DELAY)).getOrElse(DEFAULT_MAX_TRIGGER_DELAY))
// this allows us to mock system clock for testing purposes
private[kafka010] val clock: Clock = if (options.containsKey(MOCK_SYSTEM_TIME)) {
new MockedSystemClock
} else {
new SystemClock
}
private var lastTriggerMillis = 0L
private val includeHeaders = options.getBoolean(INCLUDE_HEADERS, false)
private var endPartitionOffsets: KafkaSourceOffset = _
private var latestPartitionOffsets: PartitionOffsetMap = _
private var allDataForTriggerAvailableNow: PartitionOffsetMap = _
/**
* Lazily initialize `initialPartitionOffsets` to make sure that `KafkaConsumer.poll` is only
* called in StreamExecutionThread. Otherwise, interrupting a thread while running
* `KafkaConsumer.poll` may hang forever (KAFKA-1894).
*/
override def initialOffset(): Offset = {
KafkaSourceOffset(getOrCreateInitialPartitionOffsets())
}
override def getDefaultReadLimit: ReadLimit = {
if (minOffsetPerTrigger.isDefined && maxOffsetsPerTrigger.isDefined) {
ReadLimit.compositeLimit(Array(
ReadLimit.minRows(minOffsetPerTrigger.get, maxTriggerDelayMs),
ReadLimit.maxRows(maxOffsetsPerTrigger.get)))
} else if (minOffsetPerTrigger.isDefined) {
ReadLimit.minRows(minOffsetPerTrigger.get, maxTriggerDelayMs)
} else {
// TODO (SPARK-37973) Directly call super.getDefaultReadLimit when scala issue 12523 is fixed
maxOffsetsPerTrigger.map(ReadLimit.maxRows).getOrElse(ReadLimit.allAvailable())
}
}
override def reportLatestOffset(): Offset = {
KafkaSourceOffset(latestPartitionOffsets)
}
override def latestOffset(): Offset = {
throw new UnsupportedOperationException(
"latestOffset(Offset, ReadLimit) should be called instead of this method")
}
override def latestOffset(start: Offset, readLimit: ReadLimit): Offset = {
val startPartitionOffsets = start.asInstanceOf[KafkaSourceOffset].partitionToOffsets
// Use the pre-fetched list of partition offsets when Trigger.AvailableNow is enabled.
latestPartitionOffsets = if (allDataForTriggerAvailableNow != null) {
allDataForTriggerAvailableNow
} else {
kafkaOffsetReader.fetchLatestOffsets(Some(startPartitionOffsets))
}
val limits: Seq[ReadLimit] = readLimit match {
case rows: CompositeReadLimit => rows.getReadLimits
case rows => Seq(rows)
}
val offsets = if (limits.exists(_.isInstanceOf[ReadAllAvailable])) {
// ReadAllAvailable has the highest priority
latestPartitionOffsets
} else {
val lowerLimit = limits.find(_.isInstanceOf[ReadMinRows]).map(_.asInstanceOf[ReadMinRows])
val upperLimit = limits.find(_.isInstanceOf[ReadMaxRows]).map(_.asInstanceOf[ReadMaxRows])
lowerLimit.flatMap { limit =>
// checking if we need to skip batch based on minOffsetPerTrigger criteria
val skipBatch = delayBatch(
limit.minRows, latestPartitionOffsets, startPartitionOffsets, limit.maxTriggerDelayMs)
if (skipBatch) {
logDebug(
s"Delaying batch as number of records available is less than minOffsetsPerTrigger")
Some(startPartitionOffsets)
} else {
None
}
}.orElse {
// checking if we need to adjust a range of offsets based on maxOffsetPerTrigger criteria
upperLimit.map { limit =>
rateLimit(limit.maxRows(), startPartitionOffsets, latestPartitionOffsets)
}
}.getOrElse(latestPartitionOffsets)
}
endPartitionOffsets = KafkaSourceOffset(offsets)
endPartitionOffsets
}
/** Checks if we need to skip this trigger based on minOffsetsPerTrigger & maxTriggerDelay */
private def delayBatch(
minLimit: Long,
latestOffsets: Map[TopicPartition, Long],
currentOffsets: Map[TopicPartition, Long],
maxTriggerDelayMs: Long): Boolean = {
// Checking first if the maxbatchDelay time has passed
if ((clock.getTimeMillis() - lastTriggerMillis) >= maxTriggerDelayMs) {
logDebug("Maximum wait time is passed, triggering batch")
lastTriggerMillis = clock.getTimeMillis()
false
} else {
val newRecords = latestOffsets.flatMap {
case (topic, offset) =>
Some(topic -> (offset - currentOffsets.getOrElse(topic, 0L)))
}.values.sum.toDouble
if (newRecords < minLimit) true else {
lastTriggerMillis = clock.getTimeMillis()
false
}
}
}
override def planInputPartitions(start: Offset, end: Offset): Array[InputPartition] = {
val startPartitionOffsets = start.asInstanceOf[KafkaSourceOffset].partitionToOffsets
val endPartitionOffsets = end.asInstanceOf[KafkaSourceOffset].partitionToOffsets
val offsetRanges = kafkaOffsetReader.getOffsetRangesFromResolvedOffsets(
startPartitionOffsets,
endPartitionOffsets,
reportDataLoss
)
// Generate factories based on the offset ranges
offsetRanges.map { range =>
KafkaBatchInputPartition(range, executorKafkaParams, pollTimeoutMs,
failOnDataLoss, includeHeaders)
}.toArray
}
override def createReaderFactory(): PartitionReaderFactory = {
KafkaBatchReaderFactory
}
override def deserializeOffset(json: String): Offset = {
KafkaSourceOffset(JsonUtils.partitionOffsets(json))
}
override def commit(end: Offset): Unit = {}
override def stop(): Unit = {
kafkaOffsetReader.close()
}
override def toString(): String = s"KafkaV2[$kafkaOffsetReader]"
override def metrics(latestConsumedOffset: Optional[Offset]): ju.Map[String, String] = {
KafkaMicroBatchStream.metrics(latestConsumedOffset, latestPartitionOffsets)
}
/**
* Read initial partition offsets from the checkpoint, or decide the offsets and write them to
* the checkpoint.
*/
private def getOrCreateInitialPartitionOffsets(): PartitionOffsetMap = {
// Make sure that `KafkaConsumer.poll` is only called in StreamExecutionThread.
// Otherwise, interrupting a thread while running `KafkaConsumer.poll` may hang forever
// (KAFKA-1894).
assert(Thread.currentThread().isInstanceOf[UninterruptibleThread])
// SparkSession is required for getting Hadoop configuration for writing to checkpoints
assert(SparkSession.getActiveSession.nonEmpty)
val metadataLog =
new KafkaSourceInitialOffsetWriter(SparkSession.getActiveSession.get, metadataPath)
metadataLog.get(0).getOrElse {
val offsets = startingOffsets match {
case EarliestOffsetRangeLimit =>
KafkaSourceOffset(kafkaOffsetReader.fetchEarliestOffsets())
case LatestOffsetRangeLimit =>
KafkaSourceOffset(kafkaOffsetReader.fetchLatestOffsets(None))
case SpecificOffsetRangeLimit(p) =>
kafkaOffsetReader.fetchSpecificOffsets(p, reportDataLoss)
case SpecificTimestampRangeLimit(p, strategy) =>
kafkaOffsetReader.fetchSpecificTimestampBasedOffsets(p,
isStartingOffsets = true, strategy)
case GlobalTimestampRangeLimit(ts, strategy) =>
kafkaOffsetReader.fetchGlobalTimestampBasedOffsets(ts,
isStartingOffsets = true, strategy)
}
metadataLog.add(0, offsets)
logInfo(s"Initial offsets: $offsets")
offsets
}.partitionToOffsets
}
/** Proportionally distribute limit number of offsets among topicpartitions */
private def rateLimit(
limit: Long,
from: PartitionOffsetMap,
until: PartitionOffsetMap): PartitionOffsetMap = {
lazy val fromNew = kafkaOffsetReader.fetchEarliestOffsets(until.keySet.diff(from.keySet).toSeq)
val sizes = until.flatMap {
case (tp, end) =>
// If begin isn't defined, something's wrong, but let alert logic in getBatch handle it
from.get(tp).orElse(fromNew.get(tp)).flatMap { begin =>
val size = end - begin
logDebug(s"rateLimit $tp size is $size")
if (size > 0) Some(tp -> size) else None
}
}
val total = sizes.values.sum.toDouble
if (total < 1) {
until
} else {
until.map {
case (tp, end) =>
tp -> sizes.get(tp).map { size =>
val begin = from.getOrElse(tp, fromNew(tp))
val prorate = limit * (size / total)
// Don't completely starve small topicpartitions
val prorateLong = (if (prorate < 1) Math.ceil(prorate) else Math.floor(prorate)).toLong
// need to be careful of integer overflow
// therefore added canary checks where to see if off variable could be overflowed
// refer to [https://issues.apache.org/jira/browse/SPARK-26718]
val off = if (prorateLong > Long.MaxValue - begin) {
Long.MaxValue
} else {
begin + prorateLong
}
// Paranoia, make sure not to return an offset that's past end
Math.min(end, off)
}.getOrElse(end)
}
}
}
/**
* If `failOnDataLoss` is true, this method will throw an `IllegalStateException`.
* Otherwise, just log a warning.
*/
private def reportDataLoss(message: String): Unit = {
if (failOnDataLoss) {
throw new IllegalStateException(message + s". $INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_TRUE")
} else {
logWarning(message + s". $INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_FALSE")
}
}
override def prepareForTriggerAvailableNow(): Unit = {
allDataForTriggerAvailableNow = kafkaOffsetReader.fetchLatestOffsets(
Some(getOrCreateInitialPartitionOffsets()))
}
}
object KafkaMicroBatchStream extends Logging {
/**
* Compute the difference of offset per partition between latestAvailablePartitionOffsets
* and partition offsets in the latestConsumedOffset.
* Report min/max/avg offsets behind the latest for all the partitions in the Kafka stream.
*
* Because of rate limit, latest consumed offset per partition can be smaller than
* the latest available offset per partition.
* @param latestConsumedOffset latest consumed offset
* @param latestAvailablePartitionOffsets latest available offset per partition
* @return the generated metrics map
*/
def metrics(
latestConsumedOffset: Optional[Offset],
latestAvailablePartitionOffsets: PartitionOffsetMap): ju.Map[String, String] = {
val offset = Option(latestConsumedOffset.orElse(null))
if (offset.nonEmpty && latestAvailablePartitionOffsets != null) {
val consumedPartitionOffsets = offset.map(KafkaSourceOffset(_)).get.partitionToOffsets
val offsetsBehindLatest = latestAvailablePartitionOffsets
.map(partitionOffset => partitionOffset._2 - consumedPartitionOffsets(partitionOffset._1))
if (offsetsBehindLatest.nonEmpty) {
val avgOffsetBehindLatest = offsetsBehindLatest.sum.toDouble / offsetsBehindLatest.size
return Map[String, String](
"minOffsetsBehindLatest" -> offsetsBehindLatest.min.toString,
"maxOffsetsBehindLatest" -> offsetsBehindLatest.max.toString,
"avgOffsetsBehindLatest" -> avgOffsetBehindLatest.toString).asJava
}
}
ju.Collections.emptyMap()
}
}
/**
* To return a mocked system clock for testing purposes
*/
private[kafka010] class MockedSystemClock extends ManualClock {
override def getTimeMillis(): Long = {
currentMockSystemTime
}
}
private[kafka010] object MockedSystemClock {
var currentMockSystemTime = 0L
def advanceCurrentSystemTime(advanceByMillis: Long): Unit = {
currentMockSystemTime += advanceByMillis
}
def reset(): Unit = {
currentMockSystemTime = 0L
}
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaOffsetRangeCalculator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦