spark SequenceFileRDDFunctions 源码

  • 2022-10-20
  • 浏览 (332)

spark SequenceFileRDDFunctions 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/SequenceFileRDDFunctions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.rdd

import scala.reflect.ClassTag

import org.apache.hadoop.io.Writable
import org.apache.hadoop.io.compress.CompressionCodec
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.mapred.SequenceFileOutputFormat

import org.apache.spark.internal.Logging

/**
 * Extra functions available on RDDs of (key, value) pairs to create a Hadoop SequenceFile,
 * through an implicit conversion.
 *
 * @note This can't be part of PairRDDFunctions because we need more implicit parameters to
 * convert our keys and values to Writable.
 */
class SequenceFileRDDFunctions[K: IsWritable: ClassTag, V: IsWritable: ClassTag](
    self: RDD[(K, V)],
    _keyWritableClass: Class[_ <: Writable],
    _valueWritableClass: Class[_ <: Writable])
  extends Logging
  with Serializable {

  /**
   * Output the RDD as a Hadoop SequenceFile using the Writable types we infer from the RDD's key
   * and value types. If the key or value are Writable, then we use their classes directly;
   * otherwise we map primitive types such as Int and Double to IntWritable, DoubleWritable, etc,
   * byte arrays to BytesWritable, and Strings to Text. The `path` can be on any Hadoop-supported
   * file system.
   */
  def saveAsSequenceFile(
      path: String,
      codec: Option[Class[_ <: CompressionCodec]] = None): Unit = self.withScope {
    def anyToWritable[U: IsWritable](u: U): Writable = u

    // TODO We cannot force the return type of `anyToWritable` be same as keyWritableClass and
    // valueWritableClass at the compile time. To implement that, we need to add type parameters to
    // SequenceFileRDDFunctions. however, SequenceFileRDDFunctions is a public class so it will be a
    // breaking change.
    val convertKey = self.keyClass != _keyWritableClass
    val convertValue = self.valueClass != _valueWritableClass

    logInfo("Saving as sequence file of type " +
      s"(${_keyWritableClass.getSimpleName},${_valueWritableClass.getSimpleName})" )
    val format = classOf[SequenceFileOutputFormat[Writable, Writable]]
    val jobConf = new JobConf(self.context.hadoopConfiguration)
    if (!convertKey && !convertValue) {
      self.saveAsHadoopFile(path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)
    } else if (!convertKey && convertValue) {
      self.map(x => (x._1, anyToWritable(x._2))).saveAsHadoopFile(
        path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)
    } else if (convertKey && !convertValue) {
      self.map(x => (anyToWritable(x._1), x._2)).saveAsHadoopFile(
        path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)
    } else if (convertKey && convertValue) {
      self.map(x => (anyToWritable(x._1), anyToWritable(x._2))).saveAsHadoopFile(
        path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞