spark PartitionerAwareUnionRDD 源码

  • 2022-10-20
  • 浏览 (292)

spark PartitionerAwareUnionRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/PartitionerAwareUnionRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.io.{IOException, ObjectOutputStream}

import scala.reflect.ClassTag

import org.apache.spark.{OneToOneDependency, Partition, SparkContext, TaskContext}
import org.apache.spark.util.Utils

/**
 * Class representing partitions of PartitionerAwareUnionRDD, which maintains the list of
 * corresponding partitions of parent RDDs.
 */
private[spark]
class PartitionerAwareUnionRDDPartition(
    @transient val rdds: Seq[RDD[_]],
    override val index: Int
  ) extends Partition {
  var parents = rdds.map(_.partitions(index)).toArray

  override def hashCode(): Int = index

  override def equals(other: Any): Boolean = super.equals(other)

  @throws(classOf[IOException])
  private def writeObject(oos: ObjectOutputStream): Unit = Utils.tryOrIOException {
    // Update the reference to parent partition at the time of task serialization
    parents = rdds.map(_.partitions(index)).toArray
    oos.defaultWriteObject()
  }
}

/**
 * Class representing an RDD that can take multiple RDDs partitioned by the same partitioner and
 * unify them into a single RDD while preserving the partitioner. So m RDDs with p partitions each
 * will be unified to a single RDD with p partitions and the same partitioner. The preferred
 * location for each partition of the unified RDD will be the most common preferred location
 * of the corresponding partitions of the parent RDDs. For example, location of partition 0
 * of the unified RDD will be where most of partition 0 of the parent RDDs are located.
 */
private[spark]
class PartitionerAwareUnionRDD[T: ClassTag](
    sc: SparkContext,
    var rdds: Seq[RDD[T]]
  ) extends RDD[T](sc, rdds.map(x => new OneToOneDependency(x))) {
  require(rdds.nonEmpty)
  require(rdds.forall(_.partitioner.isDefined))
  require(rdds.flatMap(_.partitioner).toSet.size == 1,
    "Parent RDDs have different partitioners: " + rdds.flatMap(_.partitioner))

  override val partitioner = rdds.head.partitioner

  override def getPartitions: Array[Partition] = {
    val numPartitions = partitioner.get.numPartitions
    (0 until numPartitions).map { index =>
      new PartitionerAwareUnionRDDPartition(rdds, index)
    }.toArray
  }

  // Get the location where most of the partitions of parent RDDs are located
  override def getPreferredLocations(s: Partition): Seq[String] = {
    logDebug("Finding preferred location for " + this + ", partition " + s.index)
    val parentPartitions = s.asInstanceOf[PartitionerAwareUnionRDDPartition].parents
    val locations = rdds.zip(parentPartitions).flatMap {
      case (rdd, part) =>
        val parentLocations = currPrefLocs(rdd, part)
        logDebug("Location of " + rdd + " partition " + part.index + " = " + parentLocations)
        parentLocations
    }
    val location = if (locations.isEmpty) {
      None
    } else {
      // Find the location that maximum number of parent partitions prefer
      Some(locations.groupBy(x => x).maxBy(_._2.length)._1)
    }
    logDebug("Selected location for " + this + ", partition " + s.index + " = " + location)
    location.toSeq
  }

  override def compute(s: Partition, context: TaskContext): Iterator[T] = {
    val parentPartitions = s.asInstanceOf[PartitionerAwareUnionRDDPartition].parents
    rdds.zip(parentPartitions).iterator.flatMap {
      case (rdd, p) => rdd.iterator(p, context)
    }
  }

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    rdds = null
  }

  // Get the *current* preferred locations from the DAGScheduler (as opposed to the static ones)
  private def currPrefLocs(rdd: RDD[_], part: Partition): Seq[String] = {
    rdd.context.getPreferredLocs(rdd, part.index).map(tl => tl.host)
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞