spark KafkaOffsetReaderConsumer 源码
spark KafkaOffsetReaderConsumer 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaOffsetReaderConsumer.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import scala.collection.JavaConverters._
import scala.collection.mutable.ArrayBuffer
import scala.util.control.NonFatal
import org.apache.kafka.clients.consumer.{Consumer, ConsumerConfig, OffsetAndTimestamp}
import org.apache.kafka.common.TopicPartition
import org.apache.spark.SparkEnv
import org.apache.spark.internal.Logging
import org.apache.spark.scheduler.ExecutorCacheTaskLocation
import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap
import org.apache.spark.sql.kafka010.KafkaSourceProvider.StrategyOnNoMatchStartingOffset
import org.apache.spark.util.{UninterruptibleThread, UninterruptibleThreadRunner}
/**
* This class uses Kafka's own [[org.apache.kafka.clients.consumer.KafkaConsumer]] API to
* read data offsets from Kafka.
* The [[ConsumerStrategy]] class defines which Kafka topics and partitions should be read
* by this source. These strategies directly correspond to the different consumption options
* in. This class is designed to return a configured
* [[org.apache.kafka.clients.consumer.KafkaConsumer]] that is used by the
* [[KafkaSource]] to query for the offsets. See the docs on
* [[org.apache.spark.sql.kafka010.ConsumerStrategy]]
* for more details.
*
* Note: This class is not ThreadSafe
*/
private[kafka010] class KafkaOffsetReaderConsumer(
consumerStrategy: ConsumerStrategy,
override val driverKafkaParams: ju.Map[String, Object],
readerOptions: CaseInsensitiveMap[String],
driverGroupIdPrefix: String) extends KafkaOffsetReader with Logging {
/**
* [[UninterruptibleThreadRunner]] ensures that all
* [[org.apache.kafka.clients.consumer.KafkaConsumer]] communication called in an
* [[UninterruptibleThread]]. In the case of streaming queries, we are already running in an
* [[UninterruptibleThread]], however for batch mode this is not the case.
*/
val uninterruptibleThreadRunner = new UninterruptibleThreadRunner("Kafka Offset Reader")
/**
* Place [[groupId]] and [[nextId]] here so that they are initialized before any consumer is
* created -- see SPARK-19564.
*/
private var groupId: String = null
private var nextId = 0
/**
* A KafkaConsumer used in the driver to query the latest Kafka offsets. This only queries the
* offsets and never commits them.
*/
@volatile protected var _consumer: Consumer[Array[Byte], Array[Byte]] = null
protected def consumer: Consumer[Array[Byte], Array[Byte]] = synchronized {
assert(Thread.currentThread().isInstanceOf[UninterruptibleThread])
if (_consumer == null) {
val newKafkaParams = new ju.HashMap[String, Object](driverKafkaParams)
if (driverKafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG) == null) {
newKafkaParams.put(ConsumerConfig.GROUP_ID_CONFIG, nextGroupId())
}
_consumer = consumerStrategy.createConsumer(newKafkaParams)
}
_consumer
}
private[kafka010] val maxOffsetFetchAttempts =
readerOptions.getOrElse(KafkaSourceProvider.FETCH_OFFSET_NUM_RETRY, "3").toInt
/**
* Number of partitions to read from Kafka. If this value is greater than the number of Kafka
* topicPartitions, we will split up the read tasks of the skewed partitions to multiple Spark
* tasks. The number of Spark tasks will be *approximately* `numPartitions`. It can be less or
* more depending on rounding errors or Kafka partitions that didn't receive any new data.
*/
private val minPartitions =
readerOptions.get(KafkaSourceProvider.MIN_PARTITIONS_OPTION_KEY).map(_.toInt)
private val rangeCalculator = new KafkaOffsetRangeCalculator(minPartitions)
private[kafka010] val offsetFetchAttemptIntervalMs =
readerOptions.getOrElse(KafkaSourceProvider.FETCH_OFFSET_RETRY_INTERVAL_MS, "1000").toLong
/**
* Whether we should divide Kafka TopicPartitions with a lot of data into smaller Spark tasks.
*/
private def shouldDivvyUpLargePartitions(numTopicPartitions: Int): Boolean = {
minPartitions.map(_ > numTopicPartitions).getOrElse(false)
}
private def nextGroupId(): String = {
groupId = driverGroupIdPrefix + "-" + nextId
nextId += 1
groupId
}
override def toString(): String = consumerStrategy.toString
override def close(): Unit = {
if (_consumer != null) uninterruptibleThreadRunner.runUninterruptibly { stopConsumer() }
uninterruptibleThreadRunner.shutdown()
}
/**
* @return The Set of TopicPartitions for a given topic
*/
private def fetchTopicPartitions(): Set[TopicPartition] =
uninterruptibleThreadRunner.runUninterruptibly {
assert(Thread.currentThread().isInstanceOf[UninterruptibleThread])
// Poll to get the latest assigned partitions
consumer.poll(0)
val partitions = consumer.assignment()
consumer.pause(partitions)
partitions.asScala.toSet
}
override def fetchPartitionOffsets(
offsetRangeLimit: KafkaOffsetRangeLimit,
isStartingOffsets: Boolean): Map[TopicPartition, Long] = {
def validateTopicPartitions(partitions: Set[TopicPartition],
partitionOffsets: Map[TopicPartition, Long]): Map[TopicPartition, Long] = {
assert(partitions == partitionOffsets.keySet,
"If startingOffsets contains specific offsets, you must specify all TopicPartitions.\n" +
"Use -1 for latest, -2 for earliest.\n" +
s"Specified: ${partitionOffsets.keySet} Assigned: ${partitions}")
logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $partitionOffsets")
partitionOffsets
}
val partitions = fetchTopicPartitions()
// Obtain TopicPartition offsets with late binding support
offsetRangeLimit match {
case EarliestOffsetRangeLimit => partitions.map {
case tp => tp -> KafkaOffsetRangeLimit.EARLIEST
}.toMap
case LatestOffsetRangeLimit => partitions.map {
case tp => tp -> KafkaOffsetRangeLimit.LATEST
}.toMap
case SpecificOffsetRangeLimit(partitionOffsets) =>
validateTopicPartitions(partitions, partitionOffsets)
case SpecificTimestampRangeLimit(partitionTimestamps, strategy) =>
fetchSpecificTimestampBasedOffsets(partitionTimestamps,
isStartingOffsets, strategy).partitionToOffsets
case GlobalTimestampRangeLimit(timestamp, strategy) =>
fetchGlobalTimestampBasedOffsets(timestamp,
isStartingOffsets, strategy).partitionToOffsets
}
}
override def fetchSpecificOffsets(
partitionOffsets: Map[TopicPartition, Long],
reportDataLoss: String => Unit): KafkaSourceOffset = {
val fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit = { partitions =>
assert(partitions.asScala == partitionOffsets.keySet,
"If startingOffsets contains specific offsets, you must specify all TopicPartitions.\n" +
"Use -1 for latest, -2 for earliest, if you don't care.\n" +
s"Specified: ${partitionOffsets.keySet} Assigned: ${partitions.asScala}")
logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $partitionOffsets")
}
val fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long] = { _ =>
partitionOffsets
}
val fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit = { fetched =>
partitionOffsets.foreach {
case (tp, off) if off != KafkaOffsetRangeLimit.LATEST &&
off != KafkaOffsetRangeLimit.EARLIEST =>
if (fetched(tp) != off) {
reportDataLoss(
s"startingOffsets for $tp was $off but consumer reset to ${fetched(tp)}")
}
case _ =>
// no real way to check that beginning or end is reasonable
}
}
fetchSpecificOffsets0(fnAssertParametersWithPartitions, fnRetrievePartitionOffsets,
fnAssertFetchedOffsets)
}
override def fetchSpecificTimestampBasedOffsets(
partitionTimestamps: Map[TopicPartition, Long],
isStartingOffsets: Boolean,
strategyOnNoMatchStartingOffset: StrategyOnNoMatchStartingOffset.Value)
: KafkaSourceOffset = {
val fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit = { partitions =>
assert(partitions.asScala == partitionTimestamps.keySet,
"If starting/endingOffsetsByTimestamp contains specific offsets, you must specify all " +
s"topics. Specified: ${partitionTimestamps.keySet} Assigned: ${partitions.asScala}")
logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $partitionTimestamps")
}
val fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long] = { _ =>
val converted = partitionTimestamps.map { case (tp, timestamp) =>
tp -> java.lang.Long.valueOf(timestamp)
}.asJava
val offsetForTime: ju.Map[TopicPartition, OffsetAndTimestamp] =
consumer.offsetsForTimes(converted)
readTimestampOffsets(
offsetForTime.asScala.toMap,
isStartingOffsets,
strategyOnNoMatchStartingOffset,
partitionTimestamps)
}
val fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit = { _ => }
fetchSpecificOffsets0(fnAssertParametersWithPartitions, fnRetrievePartitionOffsets,
fnAssertFetchedOffsets)
}
override def fetchGlobalTimestampBasedOffsets(
timestamp: Long,
isStartingOffsets: Boolean,
strategyOnNoMatchStartingOffset: StrategyOnNoMatchStartingOffset.Value)
: KafkaSourceOffset = {
val fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit = { partitions =>
logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $timestamp")
}
val fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long] = { tps =>
val converted = tps.asScala.map(_ -> java.lang.Long.valueOf(timestamp)).toMap.asJava
val offsetForTime: ju.Map[TopicPartition, OffsetAndTimestamp] =
consumer.offsetsForTimes(converted)
readTimestampOffsets(
offsetForTime.asScala.toMap,
isStartingOffsets,
strategyOnNoMatchStartingOffset,
_ => timestamp)
}
val fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit = { _ => }
fetchSpecificOffsets0(fnAssertParametersWithPartitions, fnRetrievePartitionOffsets,
fnAssertFetchedOffsets)
}
private def readTimestampOffsets(
tpToOffsetMap: Map[TopicPartition, OffsetAndTimestamp],
isStartingOffsets: Boolean,
strategyOnNoMatchStartingOffset: StrategyOnNoMatchStartingOffset.Value,
partitionTimestampFn: TopicPartition => Long): Map[TopicPartition, Long] = {
tpToOffsetMap.map { case (tp, offsetSpec) =>
val offset = if (offsetSpec == null) {
if (isStartingOffsets) {
strategyOnNoMatchStartingOffset match {
case StrategyOnNoMatchStartingOffset.ERROR =>
// This is to match the old behavior - we used assert to check the condition.
// scalastyle:off throwerror
throw new AssertionError("No offset " +
s"matched from request of topic-partition $tp and timestamp " +
s"${partitionTimestampFn(tp)}.")
// scalastyle:on throwerror
case StrategyOnNoMatchStartingOffset.LATEST =>
KafkaOffsetRangeLimit.LATEST
}
} else {
KafkaOffsetRangeLimit.LATEST
}
} else {
offsetSpec.offset()
}
tp -> offset
}.toMap
}
private def fetchSpecificOffsets0(
fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit,
fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long],
fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit): KafkaSourceOffset = {
val fetched = partitionsAssignedToConsumer {
partitions => {
fnAssertParametersWithPartitions(partitions)
val partitionOffsets = fnRetrievePartitionOffsets(partitions)
partitionOffsets.foreach {
case (tp, KafkaOffsetRangeLimit.LATEST) =>
consumer.seekToEnd(ju.Arrays.asList(tp))
case (tp, KafkaOffsetRangeLimit.EARLIEST) =>
consumer.seekToBeginning(ju.Arrays.asList(tp))
case (tp, off) => consumer.seek(tp, off)
}
partitionOffsets.map {
case (tp, _) => tp -> consumer.position(tp)
}
}
}
fnAssertFetchedOffsets(fetched)
KafkaSourceOffset(fetched)
}
override def fetchEarliestOffsets(): Map[TopicPartition, Long] = partitionsAssignedToConsumer(
partitions => {
logDebug("Seeking to the beginning")
consumer.seekToBeginning(partitions)
val partitionOffsets = partitions.asScala.map(p => p -> consumer.position(p)).toMap
logDebug(s"Got earliest offsets for partition : $partitionOffsets")
partitionOffsets
}, fetchingEarliestOffset = true)
/**
* Specific to `KafkaOffsetReaderConsumer`:
* Kafka may return earliest offsets when we are requesting latest offsets if `poll` is called
* right before `seekToEnd` (KAFKA-7703). As a workaround, we will call `position` right after
* `poll` to wait until the potential offset request triggered by `poll(0)` is done.
*/
override def fetchLatestOffsets(
knownOffsets: Option[PartitionOffsetMap]): PartitionOffsetMap =
partitionsAssignedToConsumer { partitions => {
logDebug("Seeking to the end.")
if (knownOffsets.isEmpty) {
consumer.seekToEnd(partitions)
partitions.asScala.map(p => p -> consumer.position(p)).toMap
} else {
var partitionOffsets: PartitionOffsetMap = Map.empty
/**
* Compare `knownOffsets` and `partitionOffsets`. Returns all partitions that have incorrect
* latest offset (offset in `knownOffsets` is great than the one in `partitionOffsets`).
*/
def findIncorrectOffsets(): Seq[(TopicPartition, Long, Long)] = {
val incorrectOffsets = ArrayBuffer[(TopicPartition, Long, Long)]()
partitionOffsets.foreach { case (tp, offset) =>
knownOffsets.foreach(_.get(tp).foreach { knownOffset =>
if (knownOffset > offset) {
val incorrectOffset = (tp, knownOffset, offset)
incorrectOffsets += incorrectOffset
}
})
}
incorrectOffsets.toSeq
}
// Retry to fetch latest offsets when detecting incorrect offsets. We don't use
// `withRetriesWithoutInterrupt` to retry because:
//
// - `withRetriesWithoutInterrupt` will reset the consumer for each attempt but a fresh
// consumer has a much bigger chance to hit KAFKA-7703.
// - Avoid calling `consumer.poll(0)` which may cause KAFKA-7703.
var incorrectOffsets: Seq[(TopicPartition, Long, Long)] = Nil
var attempt = 0
do {
consumer.seekToEnd(partitions)
partitionOffsets = partitions.asScala.map(p => p -> consumer.position(p)).toMap
attempt += 1
incorrectOffsets = findIncorrectOffsets()
if (incorrectOffsets.nonEmpty) {
logWarning("Found incorrect offsets in some partitions " +
s"(partition, previous offset, fetched offset): $incorrectOffsets")
if (attempt < maxOffsetFetchAttempts) {
logWarning("Retrying to fetch latest offsets because of incorrect offsets")
Thread.sleep(offsetFetchAttemptIntervalMs)
}
}
} while (incorrectOffsets.nonEmpty && attempt < maxOffsetFetchAttempts)
logDebug(s"Got latest offsets for partition : $partitionOffsets")
partitionOffsets
}
}
}
override def fetchEarliestOffsets(
newPartitions: Seq[TopicPartition]): Map[TopicPartition, Long] = {
if (newPartitions.isEmpty) {
Map.empty[TopicPartition, Long]
} else {
partitionsAssignedToConsumer(partitions => {
// Get the earliest offset of each partition
consumer.seekToBeginning(partitions)
val partitionOffsets = newPartitions.filter { p =>
// When deleting topics happen at the same time, some partitions may not be in
// `partitions`. So we need to ignore them
partitions.contains(p)
}.map(p => p -> consumer.position(p)).toMap
logDebug(s"Got earliest offsets for new partitions: $partitionOffsets")
partitionOffsets
}, fetchingEarliestOffset = true)
}
}
override def getOffsetRangesFromUnresolvedOffsets(
startingOffsets: KafkaOffsetRangeLimit,
endingOffsets: KafkaOffsetRangeLimit): Seq[KafkaOffsetRange] = {
val fromPartitionOffsets = fetchPartitionOffsets(startingOffsets, isStartingOffsets = true)
val untilPartitionOffsets = fetchPartitionOffsets(endingOffsets, isStartingOffsets = false)
// Obtain topicPartitions in both from and until partition offset, ignoring
// topic partitions that were added and/or deleted between the two above calls.
if (fromPartitionOffsets.keySet != untilPartitionOffsets.keySet) {
implicit val topicOrdering: Ordering[TopicPartition] = Ordering.by(t => t.topic())
val fromTopics = fromPartitionOffsets.keySet.toList.sorted.mkString(",")
val untilTopics = untilPartitionOffsets.keySet.toList.sorted.mkString(",")
throw new IllegalStateException("different topic partitions " +
s"for starting offsets topics[${fromTopics}] and " +
s"ending offsets topics[${untilTopics}]")
}
// Calculate offset ranges
val offsetRangesBase = untilPartitionOffsets.keySet.map { tp =>
val fromOffset = fromPartitionOffsets.get(tp).getOrElse {
// This should not happen since topicPartitions contains all partitions not in
// fromPartitionOffsets
throw new IllegalStateException(s"$tp doesn't have a from offset")
}
val untilOffset = untilPartitionOffsets(tp)
KafkaOffsetRange(tp, fromOffset, untilOffset, None)
}.toSeq
if (shouldDivvyUpLargePartitions(offsetRangesBase.size)) {
val fromOffsetsMap =
offsetRangesBase.map(range => (range.topicPartition, range.fromOffset)).toMap
val untilOffsetsMap =
offsetRangesBase.map(range => (range.topicPartition, range.untilOffset)).toMap
// No need to report data loss here
val resolvedFromOffsets = fetchSpecificOffsets(fromOffsetsMap, _ => ()).partitionToOffsets
val resolvedUntilOffsets = fetchSpecificOffsets(untilOffsetsMap, _ => ()).partitionToOffsets
val ranges = offsetRangesBase.map(_.topicPartition).map { tp =>
KafkaOffsetRange(tp, resolvedFromOffsets(tp), resolvedUntilOffsets(tp), preferredLoc = None)
}
val divvied = rangeCalculator.getRanges(ranges).groupBy(_.topicPartition)
divvied.flatMap { case (tp, splitOffsetRanges) =>
if (splitOffsetRanges.length == 1) {
Seq(KafkaOffsetRange(tp, fromOffsetsMap(tp), untilOffsetsMap(tp), None))
} else {
// the list can't be empty
val first = splitOffsetRanges.head.copy(fromOffset = fromOffsetsMap(tp))
val end = splitOffsetRanges.last.copy(untilOffset = untilOffsetsMap(tp))
Seq(first) ++ splitOffsetRanges.drop(1).dropRight(1) :+ end
}
}.toArray.toSeq
} else {
offsetRangesBase
}
}
private def getSortedExecutorList(): Array[String] = {
def compare(a: ExecutorCacheTaskLocation, b: ExecutorCacheTaskLocation): Boolean = {
if (a.host == b.host) {
a.executorId > b.executorId
} else {
a.host > b.host
}
}
val bm = SparkEnv.get.blockManager
bm.master.getPeers(bm.blockManagerId).toArray
.map(x => ExecutorCacheTaskLocation(x.host, x.executorId))
.sortWith(compare)
.map(_.toString)
}
override def getOffsetRangesFromResolvedOffsets(
fromPartitionOffsets: PartitionOffsetMap,
untilPartitionOffsets: PartitionOffsetMap,
reportDataLoss: String => Unit): Seq[KafkaOffsetRange] = {
// Find the new partitions, and get their earliest offsets
val newPartitions = untilPartitionOffsets.keySet.diff(fromPartitionOffsets.keySet)
val newPartitionInitialOffsets = fetchEarliestOffsets(newPartitions.toSeq)
if (newPartitionInitialOffsets.keySet != newPartitions) {
// We cannot get from offsets for some partitions. It means they got deleted.
val deletedPartitions = newPartitions.diff(newPartitionInitialOffsets.keySet)
reportDataLoss(
s"Cannot find earliest offsets of ${deletedPartitions}. Some data may have been missed")
}
logInfo(s"Partitions added: $newPartitionInitialOffsets")
newPartitionInitialOffsets.filter(_._2 != 0).foreach { case (p, o) =>
reportDataLoss(
s"Added partition $p starts from $o instead of 0. Some data may have been missed")
}
val deletedPartitions = fromPartitionOffsets.keySet.diff(untilPartitionOffsets.keySet)
if (deletedPartitions.nonEmpty) {
val message = if (driverKafkaParams.containsKey(ConsumerConfig.GROUP_ID_CONFIG)) {
s"$deletedPartitions are gone. ${KafkaSourceProvider.CUSTOM_GROUP_ID_ERROR_MESSAGE}"
} else {
s"$deletedPartitions are gone. Some data may have been missed."
}
reportDataLoss(message)
}
// Use the until partitions to calculate offset ranges to ignore partitions that have
// been deleted
val topicPartitions = untilPartitionOffsets.keySet.filter { tp =>
// Ignore partitions that we don't know the from offsets.
newPartitionInitialOffsets.contains(tp) || fromPartitionOffsets.contains(tp)
}.toSeq
logDebug("TopicPartitions: " + topicPartitions.mkString(", "))
val fromOffsets = fromPartitionOffsets ++ newPartitionInitialOffsets
val untilOffsets = untilPartitionOffsets
val ranges = topicPartitions.map { tp =>
val fromOffset = fromOffsets(tp)
val untilOffset = untilOffsets(tp)
if (untilOffset < fromOffset) {
reportDataLoss(s"Partition $tp's offset was changed from " +
s"$fromOffset to $untilOffset, some data may have been missed")
}
KafkaOffsetRange(tp, fromOffset, untilOffset, preferredLoc = None)
}
rangeCalculator.getRanges(ranges, getSortedExecutorList)
}
private def partitionsAssignedToConsumer(
body: ju.Set[TopicPartition] => Map[TopicPartition, Long],
fetchingEarliestOffset: Boolean = false)
: Map[TopicPartition, Long] = uninterruptibleThreadRunner.runUninterruptibly {
withRetriesWithoutInterrupt {
// Poll to get the latest assigned partitions
consumer.poll(0)
val partitions = consumer.assignment()
if (!fetchingEarliestOffset) {
// Call `position` to wait until the potential offset request triggered by `poll(0)` is
// done. This is a workaround for KAFKA-7703, which an async `seekToBeginning` triggered by
// `poll(0)` may reset offsets that should have been set by another request.
partitions.asScala.map(p => p -> consumer.position(p)).foreach(_ => {})
}
consumer.pause(partitions)
logDebug(s"Partitions assigned to consumer: $partitions.")
body(partitions)
}
}
/**
* Helper function that does multiple retries on a body of code that returns offsets.
* Retries are needed to handle transient failures. For e.g. race conditions between getting
* assignment and getting position while topics/partitions are deleted can cause NPEs.
*
* This method also makes sure `body` won't be interrupted to workaround a potential issue in
* `KafkaConsumer.poll`. (KAFKA-1894)
*/
private def withRetriesWithoutInterrupt(
body: => Map[TopicPartition, Long]): Map[TopicPartition, Long] = {
// Make sure `KafkaConsumer.poll` won't be interrupted (KAFKA-1894)
assert(Thread.currentThread().isInstanceOf[UninterruptibleThread])
synchronized {
var result: Option[Map[TopicPartition, Long]] = None
var attempt = 1
var lastException: Throwable = null
while (result.isEmpty && attempt <= maxOffsetFetchAttempts
&& !Thread.currentThread().isInterrupted) {
Thread.currentThread match {
case ut: UninterruptibleThread =>
// "KafkaConsumer.poll" may hang forever if the thread is interrupted (E.g., the query
// is stopped)(KAFKA-1894). Hence, we just make sure we don't interrupt it.
//
// If the broker addresses are wrong, or Kafka cluster is down, "KafkaConsumer.poll" may
// hang forever as well. This cannot be resolved in KafkaSource until Kafka fixes the
// issue.
ut.runUninterruptibly {
try {
result = Some(body)
} catch {
case NonFatal(e) =>
lastException = e
logWarning(s"Error in attempt $attempt getting Kafka offsets: ", e)
attempt += 1
Thread.sleep(offsetFetchAttemptIntervalMs)
resetConsumer()
}
}
case _ =>
throw new IllegalStateException(
"Kafka APIs must be executed on a o.a.spark.util.UninterruptibleThread")
}
}
if (Thread.interrupted()) {
throw new InterruptedException()
}
if (result.isEmpty) {
assert(attempt > maxOffsetFetchAttempts)
assert(lastException != null)
throw lastException
}
result.get
}
}
private def stopConsumer(): Unit = synchronized {
assert(Thread.currentThread().isInstanceOf[UninterruptibleThread])
if (_consumer != null) _consumer.close()
}
private def resetConsumer(): Unit = synchronized {
stopConsumer()
_consumer = null // will automatically get reinitialized again
}
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦