spark RDDBarrier 源码

  • 2022-10-20
  • 浏览 (291)

spark RDDBarrier 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/RDDBarrier.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import scala.reflect.ClassTag

import org.apache.spark.TaskContext
import org.apache.spark.annotation.{Experimental, Since}

/**
 * :: Experimental ::
 * Wraps an RDD in a barrier stage, which forces Spark to launch tasks of this stage together.
 * [[org.apache.spark.rdd.RDDBarrier]] instances are created by
 * [[org.apache.spark.rdd.RDD#barrier]].
 */
@Experimental
@Since("2.4.0")
class RDDBarrier[T: ClassTag] private[spark] (rdd: RDD[T]) {

  /**
   * :: Experimental ::
   * Returns a new RDD by applying a function to each partition of the wrapped RDD,
   * where tasks are launched together in a barrier stage.
   * The interface is the same as [[org.apache.spark.rdd.RDD#mapPartitions]].
   * Please see the API doc there.
   * @see [[org.apache.spark.BarrierTaskContext]]
   */
  @Experimental
  @Since("2.4.0")
  def mapPartitions[S: ClassTag](
      f: Iterator[T] => Iterator[S],
      preservesPartitioning: Boolean = false): RDD[S] = rdd.withScope {
    val cleanedF = rdd.sparkContext.clean(f)
    new MapPartitionsRDD(
      rdd,
      (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter),
      preservesPartitioning,
      isFromBarrier = true
    )
  }

  /**
   * :: Experimental ::
   * Returns a new RDD by applying a function to each partition of the wrapped RDD, while tracking
   * the index of the original partition. And all tasks are launched together in a barrier stage.
   * The interface is the same as [[org.apache.spark.rdd.RDD#mapPartitionsWithIndex]].
   * Please see the API doc there.
   * @see [[org.apache.spark.BarrierTaskContext]]
   */
  @Experimental
  @Since("3.0.0")
  def mapPartitionsWithIndex[S: ClassTag](
      f: (Int, Iterator[T]) => Iterator[S],
      preservesPartitioning: Boolean = false): RDD[S] = rdd.withScope {
    val cleanedF = rdd.sparkContext.clean(f)
    new MapPartitionsRDD(
      rdd,
      (_: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter),
      preservesPartitioning,
      isFromBarrier = true
    )
  }

  // TODO: [SPARK-25247] add extra conf to RDDBarrier, e.g., timeout.
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞