spark KafkaSource 源码
spark KafkaSource 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaSource.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import org.apache.kafka.common.TopicPartition
import org.apache.spark.SparkContext
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.Network.NETWORK_TIMEOUT
import org.apache.spark.scheduler.ExecutorCacheTaskLocation
import org.apache.spark.sql._
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap
import org.apache.spark.sql.connector.read.streaming
import org.apache.spark.sql.connector.read.streaming.{Offset => _, _}
import org.apache.spark.sql.execution.streaming._
import org.apache.spark.sql.kafka010.KafkaSourceProvider._
import org.apache.spark.sql.types._
import org.apache.spark.util.{Clock, SystemClock, Utils}
/**
* A [[Source]] that reads data from Kafka using the following design.
*
* - The [[KafkaSourceOffset]] is the custom [[Offset]] defined for this source that contains
* a map of TopicPartition -> offset. Note that this offset is 1 + (available offset). For
* example if the last record in a Kafka topic "t", partition 2 is offset 5, then
* KafkaSourceOffset will contain TopicPartition("t", 2) -> 6. This is done keep it consistent
* with the semantics of `KafkaConsumer.position()`.
*
* - The [[KafkaSource]] written to do the following.
*
* - As soon as the source is created, the pre-configured [[KafkaOffsetReader]]
* is used to query the initial offsets that this source should
* start reading from. This is used to create the first batch.
*
* - `getOffset()` uses the [[KafkaOffsetReader]] to query the latest
* available offsets, which are returned as a [[KafkaSourceOffset]].
*
* - `getBatch()` returns a DF that reads from the 'start offset' until the 'end offset' in
* for each partition. The end offset is excluded to be consistent with the semantics of
* [[KafkaSourceOffset]] and `KafkaConsumer.position()`.
*
* - The DF returned is based on [[KafkaSourceRDD]] which is constructed such that the
* data from Kafka topic + partition is consistently read by the same executors across
* batches, and cached KafkaConsumers in the executors can be reused efficiently. See the
* docs on [[KafkaSourceRDD]] for more details.
*
* Zero data lost is not guaranteed when topics are deleted. If zero data lost is critical, the user
* must make sure all messages in a topic have been processed when deleting a topic.
*
* There is a known issue caused by KAFKA-1894: the query using KafkaSource maybe cannot be stopped.
* To avoid this issue, you should make sure stopping the query before stopping the Kafka brokers
* and not use wrong broker addresses.
*/
private[kafka010] class KafkaSource(
sqlContext: SQLContext,
kafkaReader: KafkaOffsetReader,
executorKafkaParams: ju.Map[String, Object],
sourceOptions: CaseInsensitiveMap[String],
metadataPath: String,
startingOffsets: KafkaOffsetRangeLimit,
failOnDataLoss: Boolean)
extends SupportsTriggerAvailableNow with Source with Logging {
private val sc = sqlContext.sparkContext
private val pollTimeoutMs =
sourceOptions.getOrElse(CONSUMER_POLL_TIMEOUT, (sc.conf.get(NETWORK_TIMEOUT) * 1000L).toString)
.toLong
private val maxOffsetsPerTrigger =
sourceOptions.get(MAX_OFFSET_PER_TRIGGER).map(_.toLong)
private[kafka010] val minOffsetPerTrigger =
sourceOptions.get(MIN_OFFSET_PER_TRIGGER).map(_.toLong)
private[kafka010] val maxTriggerDelayMs =
Utils.timeStringAsMs(sourceOptions.get(MAX_TRIGGER_DELAY).getOrElse(DEFAULT_MAX_TRIGGER_DELAY))
// this allows us to mock system clock for testing purposes
private[kafka010] val clock: Clock = if (sourceOptions.contains(MOCK_SYSTEM_TIME)) {
new MockedSystemClock
} else {
new SystemClock
}
private val includeHeaders =
sourceOptions.getOrElse(INCLUDE_HEADERS, "false").toBoolean
private var lastTriggerMillis = 0L
private var allDataForTriggerAvailableNow: PartitionOffsetMap = _
/**
* Lazily initialize `initialPartitionOffsets` to make sure that `KafkaConsumer.poll` is only
* called in StreamExecutionThread. Otherwise, interrupting a thread while running
* `KafkaConsumer.poll` may hang forever (KAFKA-1894).
*/
private lazy val initialPartitionOffsets = {
val metadataLog = new KafkaSourceInitialOffsetWriter(sqlContext.sparkSession, metadataPath)
metadataLog.get(0).getOrElse {
val offsets = startingOffsets match {
case EarliestOffsetRangeLimit => KafkaSourceOffset(kafkaReader.fetchEarliestOffsets())
case LatestOffsetRangeLimit => KafkaSourceOffset(kafkaReader.fetchLatestOffsets(None))
case SpecificOffsetRangeLimit(p) => kafkaReader.fetchSpecificOffsets(p, reportDataLoss)
case SpecificTimestampRangeLimit(p, strategy) =>
kafkaReader.fetchSpecificTimestampBasedOffsets(p, isStartingOffsets = true, strategy)
case GlobalTimestampRangeLimit(ts, strategy) =>
kafkaReader.fetchGlobalTimestampBasedOffsets(ts, isStartingOffsets = true, strategy)
}
metadataLog.add(0, offsets)
logInfo(s"Initial offsets: $offsets")
offsets
}.partitionToOffsets
}
override def getDefaultReadLimit: ReadLimit = {
if (minOffsetPerTrigger.isDefined && maxOffsetsPerTrigger.isDefined) {
ReadLimit.compositeLimit(Array(
ReadLimit.minRows(minOffsetPerTrigger.get, maxTriggerDelayMs),
ReadLimit.maxRows(maxOffsetsPerTrigger.get)))
} else if (minOffsetPerTrigger.isDefined) {
ReadLimit.minRows(minOffsetPerTrigger.get, maxTriggerDelayMs)
} else {
// TODO (SPARK-37973) Directly call super.getDefaultReadLimit when scala issue 12523 is fixed
maxOffsetsPerTrigger.map(ReadLimit.maxRows).getOrElse(ReadLimit.allAvailable())
}
}
// The offsets for each topic-partition currently read to process. Note this maybe not necessarily
// to be latest offsets because we possibly apply a read limit.
private var currentPartitionOffsets: Option[Map[TopicPartition, Long]] = None
// The latest offsets for each topic-partition.
private var latestPartitionOffsets: Option[Map[TopicPartition, Long]] = None
private val converter = new KafkaRecordToRowConverter()
override def schema: StructType = KafkaRecordToRowConverter.kafkaSchema(includeHeaders)
/** Returns the maximum available offset for this source. */
override def getOffset: Option[Offset] = {
throw new UnsupportedOperationException(
"latestOffset(Offset, ReadLimit) should be called instead of this method")
}
override def reportLatestOffset(): streaming.Offset = {
latestPartitionOffsets.map(KafkaSourceOffset(_)).orNull
}
override def latestOffset(startOffset: streaming.Offset, limit: ReadLimit): streaming.Offset = {
// Make sure initialPartitionOffsets is initialized
initialPartitionOffsets
val currentOffsets = currentPartitionOffsets.orElse(Some(initialPartitionOffsets))
// Use the pre-fetched list of partition offsets when Trigger.AvailableNow is enabled.
val latest = if (allDataForTriggerAvailableNow != null) {
allDataForTriggerAvailableNow
} else {
kafkaReader.fetchLatestOffsets(currentOffsets)
}
latestPartitionOffsets = Some(latest)
val limits: Seq[ReadLimit] = limit match {
case rows: CompositeReadLimit => rows.getReadLimits
case rows => Seq(rows)
}
val offsets = if (limits.exists(_.isInstanceOf[ReadAllAvailable])) {
// ReadAllAvailable has the highest priority
latest
} else {
val lowerLimit = limits.find(_.isInstanceOf[ReadMinRows]).map(_.asInstanceOf[ReadMinRows])
val upperLimit = limits.find(_.isInstanceOf[ReadMaxRows]).map(_.asInstanceOf[ReadMaxRows])
lowerLimit.flatMap { limit =>
// checking if we need to skip batch based on minOffsetPerTrigger criteria
val skipBatch = delayBatch(
limit.minRows, latest, currentOffsets.get, limit.maxTriggerDelayMs)
if (skipBatch) {
logDebug(
s"Delaying batch as number of records available is less than minOffsetsPerTrigger")
// Pass same current offsets as output to skip trigger
Some(currentOffsets.get)
} else {
None
}
}.orElse {
// checking if we need to adjust a range of offsets based on maxOffsetPerTrigger criteria
upperLimit.map { limit =>
rateLimit(limit.maxRows, currentPartitionOffsets.getOrElse(initialPartitionOffsets),
latest)
}
}.getOrElse(latest)
}
currentPartitionOffsets = Some(offsets)
logDebug(s"GetOffset: ${offsets.toSeq.map(_.toString).sorted}")
KafkaSourceOffset(offsets)
}
/** Checks if we need to skip this trigger based on minOffsetsPerTrigger & maxTriggerDelay */
private def delayBatch(
minLimit: Long,
latestOffsets: Map[TopicPartition, Long],
currentOffsets: Map[TopicPartition, Long],
maxTriggerDelayMs: Long): Boolean = {
// Checking first if the maxbatchDelay time has passed
if ((clock.getTimeMillis() - lastTriggerMillis) >= maxTriggerDelayMs) {
logDebug("Maximum wait time is passed, triggering batch")
lastTriggerMillis = clock.getTimeMillis()
false
} else {
val newRecords = latestOffsets.flatMap {
case (topic, offset) =>
Some(topic -> (offset - currentOffsets.getOrElse(topic, 0L)))
}.values.sum.toDouble
if (newRecords < minLimit) true else {
lastTriggerMillis = clock.getTimeMillis()
false
}
}
}
/** Proportionally distribute limit number of offsets among topicpartitions */
private def rateLimit(
limit: Long,
from: Map[TopicPartition, Long],
until: Map[TopicPartition, Long]): Map[TopicPartition, Long] = {
lazy val fromNew = kafkaReader.fetchEarliestOffsets(until.keySet.diff(from.keySet).toSeq)
val sizes = until.flatMap {
case (tp, end) =>
// If begin isn't defined, something's wrong, but let alert logic in getBatch handle it
from.get(tp).orElse(fromNew.get(tp)).flatMap { begin =>
val size = end - begin
logDebug(s"rateLimit $tp size is $size")
if (size > 0) Some(tp -> size) else None
}
}
val total = sizes.values.sum.toDouble
if (total < 1) {
until
} else {
until.map {
case (tp, end) =>
tp -> sizes.get(tp).map { size =>
val begin = from.getOrElse(tp, fromNew(tp))
val prorate = limit * (size / total)
logDebug(s"rateLimit $tp prorated amount is $prorate")
// Don't completely starve small topicpartitions
val prorateLong = (if (prorate < 1) Math.ceil(prorate) else Math.floor(prorate)).toLong
// need to be careful of integer overflow
// therefore added canary checks where to see if off variable could be overflowed
// refer to [https://issues.apache.org/jira/browse/SPARK-26718]
val off = if (prorateLong > Long.MaxValue - begin) {
Long.MaxValue
} else {
begin + prorateLong
}
logDebug(s"rateLimit $tp new offset is $off")
// Paranoia, make sure not to return an offset that's past end
Math.min(end, off)
}.getOrElse(end)
}
}
}
/**
* Returns the data that is between the offsets
* [`start.get.partitionToOffsets`, `end.partitionToOffsets`), i.e. end.partitionToOffsets is
* exclusive.
*/
override def getBatch(start: Option[Offset], end: Offset): DataFrame = {
// Make sure initialPartitionOffsets is initialized
initialPartitionOffsets
logInfo(s"GetBatch called with start = $start, end = $end")
val untilPartitionOffsets = KafkaSourceOffset.getPartitionOffsets(end)
// On recovery, getBatch will get called before getOffset
if (currentPartitionOffsets.isEmpty) {
currentPartitionOffsets = Some(untilPartitionOffsets)
}
if (start.isDefined && start.get == end) {
return sqlContext.internalCreateDataFrame(
sqlContext.sparkContext.emptyRDD[InternalRow].setName("empty"), schema, isStreaming = true)
}
val fromPartitionOffsets = start match {
case Some(prevBatchEndOffset) =>
KafkaSourceOffset.getPartitionOffsets(prevBatchEndOffset)
case None =>
initialPartitionOffsets
}
val offsetRanges = kafkaReader.getOffsetRangesFromResolvedOffsets(
fromPartitionOffsets,
untilPartitionOffsets,
reportDataLoss)
// Create an RDD that reads from Kafka and get the (key, value) pair as byte arrays.
val rdd = if (includeHeaders) {
new KafkaSourceRDD(
sc, executorKafkaParams, offsetRanges, pollTimeoutMs, failOnDataLoss)
.map(converter.toInternalRowWithHeaders)
} else {
new KafkaSourceRDD(
sc, executorKafkaParams, offsetRanges, pollTimeoutMs, failOnDataLoss)
.map(converter.toInternalRowWithoutHeaders)
}
logInfo("GetBatch generating RDD of offset range: " +
offsetRanges.sortBy(_.topicPartition.toString).mkString(", "))
sqlContext.internalCreateDataFrame(rdd.setName("kafka"), schema, isStreaming = true)
}
/** Stop this source and free any resources it has allocated. */
override def stop(): Unit = synchronized {
kafkaReader.close()
}
override def toString(): String = s"KafkaSourceV1[$kafkaReader]"
/**
* If `failOnDataLoss` is true, this method will throw an `IllegalStateException`.
* Otherwise, just log a warning.
*/
private def reportDataLoss(message: String): Unit = {
if (failOnDataLoss) {
throw new IllegalStateException(message + s". $INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_TRUE")
} else {
logWarning(message + s". $INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_FALSE")
}
}
override def prepareForTriggerAvailableNow(): Unit = {
allDataForTriggerAvailableNow = kafkaReader.fetchLatestOffsets(Some(initialPartitionOffsets))
}
}
/** Companion object for the [[KafkaSource]]. */
private[kafka010] object KafkaSource {
def getSortedExecutorList(sc: SparkContext): Array[String] = {
val bm = sc.env.blockManager
bm.master.getPeers(bm.blockManagerId).toArray
.map(x => ExecutorCacheTaskLocation(x.host, x.executorId))
.sortWith(compare)
.map(_.toString)
}
private def compare(a: ExecutorCacheTaskLocation, b: ExecutorCacheTaskLocation): Boolean = {
if (a.host == b.host) { a.executorId > b.executorId } else { a.host > b.host }
}
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦