spark KafkaSourceRDD 源码
spark KafkaSourceRDD 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaSourceRDD.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.spark.{Partition, SparkContext, TaskContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer
import org.apache.spark.storage.StorageLevel
import org.apache.spark.util.NextIterator
/** Partition of the KafkaSourceRDD */
private[kafka010] case class KafkaSourceRDDPartition(
index: Int, offsetRange: KafkaOffsetRange) extends Partition
/**
* An RDD that reads data from Kafka based on offset ranges across multiple partitions.
* Additionally, it allows preferred locations to be set for each topic + partition, so that
* the [[KafkaSource]] can ensure the same executor always reads the same topic + partition
* and cached KafkaConsumers (see [[KafkaDataConsumer]] can be used read data efficiently.
*
* @param sc the [[SparkContext]]
* @param executorKafkaParams Kafka configuration for creating KafkaConsumer on the executors
* @param offsetRanges Offset ranges that define the Kafka data belonging to this RDD
*/
private[kafka010] class KafkaSourceRDD(
sc: SparkContext,
executorKafkaParams: ju.Map[String, Object],
offsetRanges: Seq[KafkaOffsetRange],
pollTimeoutMs: Long,
failOnDataLoss: Boolean)
extends RDD[ConsumerRecord[Array[Byte], Array[Byte]]](sc, Nil) {
override def persist(newLevel: StorageLevel): this.type = {
logError("Kafka ConsumerRecord is not serializable. " +
"Use .map to extract fields before calling .persist or .window")
super.persist(newLevel)
}
override def getPartitions: Array[Partition] = {
offsetRanges.zipWithIndex.map { case (o, i) => new KafkaSourceRDDPartition(i, o) }.toArray
}
override def getPreferredLocations(split: Partition): Seq[String] = {
val part = split.asInstanceOf[KafkaSourceRDDPartition]
part.offsetRange.preferredLoc.map(Seq(_)).getOrElse(Seq.empty)
}
override def compute(
thePart: Partition,
context: TaskContext): Iterator[ConsumerRecord[Array[Byte], Array[Byte]]] = {
val sourcePartition = thePart.asInstanceOf[KafkaSourceRDDPartition]
val consumer = KafkaDataConsumer.acquire(
sourcePartition.offsetRange.topicPartition, executorKafkaParams)
val range = resolveRange(consumer, sourcePartition.offsetRange)
assert(
range.fromOffset <= range.untilOffset,
s"Beginning offset ${range.fromOffset} is after the ending offset ${range.untilOffset} " +
s"for topic ${range.topic} partition ${range.partition}. " +
"You either provided an invalid fromOffset, or the Kafka topic has been damaged")
if (range.fromOffset == range.untilOffset) {
logInfo(s"Beginning offset ${range.fromOffset} is the same as ending offset " +
s"skipping ${range.topic} ${range.partition}")
consumer.release()
Iterator.empty
} else {
val underlying = new NextIterator[ConsumerRecord[Array[Byte], Array[Byte]]]() {
var requestOffset = range.fromOffset
override def getNext(): ConsumerRecord[Array[Byte], Array[Byte]] = {
if (requestOffset >= range.untilOffset) {
// Processed all offsets in this partition.
finished = true
null
} else {
val r = consumer.get(requestOffset, range.untilOffset, pollTimeoutMs, failOnDataLoss)
if (r == null) {
// Losing some data. Skip the rest offsets in this partition.
finished = true
null
} else {
requestOffset = r.offset + 1
r
}
}
}
override protected def close(): Unit = {
consumer.release()
}
}
// Release consumer, either by removing it or indicating we're no longer using it
context.addTaskCompletionListener[Unit] { _ =>
underlying.closeIfNeeded()
}
underlying
}
}
private def resolveRange(consumer: KafkaDataConsumer, range: KafkaOffsetRange) = {
if (range.fromOffset < 0 || range.untilOffset < 0) {
// Late bind the offset range
val availableOffsetRange = consumer.getAvailableOffsetRange()
val fromOffset = if (range.fromOffset < 0) {
assert(range.fromOffset == KafkaOffsetRangeLimit.EARLIEST,
s"earliest offset ${range.fromOffset} does not equal ${KafkaOffsetRangeLimit.EARLIEST}")
availableOffsetRange.earliest
} else {
range.fromOffset
}
val untilOffset = if (range.untilOffset < 0) {
assert(range.untilOffset == KafkaOffsetRangeLimit.LATEST,
s"latest offset ${range.untilOffset} does not equal ${KafkaOffsetRangeLimit.LATEST}")
availableOffsetRange.latest
} else {
range.untilOffset
}
KafkaOffsetRange(range.topicPartition,
fromOffset, untilOffset, range.preferredLoc)
} else {
range
}
}
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦