spark KafkaWriteTask 源码

  • 2022-10-20
  • 浏览 (316)

spark KafkaWriteTask 代码

文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaWriteTask.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.kafka010

import java.{util => ju}

import scala.collection.JavaConverters._

import org.apache.kafka.clients.producer.{Callback, KafkaProducer, ProducerRecord, RecordMetadata}
import org.apache.kafka.common.header.Header
import org.apache.kafka.common.header.internals.RecordHeader

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Attribute, Cast, UnsafeProjection}
import org.apache.spark.sql.kafka010.producer.{CachedKafkaProducer, InternalKafkaProducerPool}
import org.apache.spark.sql.types.BinaryType

/**
 * Writes out data in a single Spark task, without any concerns about how
 * to commit or abort tasks. Exceptions thrown by the implementation of this class will
 * automatically trigger task aborts.
 */
private[kafka010] class KafkaWriteTask(
    producerConfiguration: ju.Map[String, Object],
    inputSchema: Seq[Attribute],
    topic: Option[String]) extends KafkaRowWriter(inputSchema, topic) {
  // used to synchronize with Kafka callbacks
  private var producer: Option[CachedKafkaProducer] = None

  /**
   * Writes key value data out to topics.
   */
  def execute(iterator: Iterator[InternalRow]): Unit = {
    producer = Some(InternalKafkaProducerPool.acquire(producerConfiguration))
    val internalProducer = producer.get.producer
    while (iterator.hasNext && failedWrite == null) {
      val currentRow = iterator.next()
      sendRow(currentRow, internalProducer)
    }
  }

  def close(): Unit = {
    try {
      checkForErrors()
      producer.foreach { p =>
        p.producer.flush()
        checkForErrors()
      }
    } finally {
      producer.foreach(InternalKafkaProducerPool.release)
      producer = None
    }
  }
}

private[kafka010] abstract class KafkaRowWriter(
    inputSchema: Seq[Attribute], topic: Option[String]) {

  // used to synchronize with Kafka callbacks
  @volatile protected var failedWrite: Exception = _
  protected val projection = createProjection

  private val callback = new Callback() {
    override def onCompletion(recordMetadata: RecordMetadata, e: Exception): Unit = {
      if (failedWrite == null && e != null) {
        failedWrite = e
      }
    }
  }

  /**
   * Send the specified row to the producer, with a callback that will save any exception
   * to failedWrite. Note that send is asynchronous; subclasses must flush() their producer before
   * assuming the row is in Kafka.
   */
  protected def sendRow(
      row: InternalRow, producer: KafkaProducer[Array[Byte], Array[Byte]]): Unit = {
    val projectedRow = projection(row)
    val topic = projectedRow.getUTF8String(0)
    val key = projectedRow.getBinary(1)
    val value = projectedRow.getBinary(2)
    if (topic == null) {
      throw new NullPointerException(s"null topic present in the data. Use the " +
        s"${KafkaSourceProvider.TOPIC_OPTION_KEY} option for setting a default topic.")
    }
    val partition: Integer =
      if (projectedRow.isNullAt(4)) null else projectedRow.getInt(4)
    val record = if (projectedRow.isNullAt(3)) {
      new ProducerRecord[Array[Byte], Array[Byte]](topic.toString, partition, key, value)
    } else {
      val headerArray = projectedRow.getArray(3)
      val headers = (0 until headerArray.numElements()).map { i =>
        val struct = headerArray.getStruct(i, 2)
        new RecordHeader(struct.getUTF8String(0).toString, struct.getBinary(1))
          .asInstanceOf[Header]
      }
      new ProducerRecord[Array[Byte], Array[Byte]](
        topic.toString, partition, key, value, headers.asJava)
    }
    producer.send(record, callback)
  }

  protected def checkForErrors(): Unit = {
    if (failedWrite != null) {
      throw failedWrite
    }
  }

  private def createProjection = {
    UnsafeProjection.create(
      Seq(
        KafkaWriter.topicExpression(inputSchema, topic),
        Cast(KafkaWriter.keyExpression(inputSchema), BinaryType),
        Cast(KafkaWriter.valueExpression(inputSchema), BinaryType),
        KafkaWriter.headersExpression(inputSchema),
        KafkaWriter.partitionExpression(inputSchema)
      ),
      inputSchema
    )
  }
}

相关信息

spark 源码目录

相关文章

spark ConsumerStrategy 源码

spark JsonUtils 源码

spark KafkaBatch 源码

spark KafkaBatchPartitionReader 源码

spark KafkaBatchWrite 源码

spark KafkaContinuousStream 源码

spark KafkaDataWriter 源码

spark KafkaMicroBatchStream 源码

spark KafkaOffsetRangeCalculator 源码

spark KafkaOffsetRangeLimit 源码

0  赞