spark ZippedPartitionsRDD 源码

  • 2022-10-20
  • 浏览 (346)

spark ZippedPartitionsRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/ZippedPartitionsRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.io.{IOException, ObjectOutputStream}

import scala.reflect.ClassTag

import org.apache.spark.{OneToOneDependency, Partition, SparkContext, TaskContext}
import org.apache.spark.util.Utils

private[spark] class ZippedPartitionsPartition(
    idx: Int,
    @transient private val rdds: Seq[RDD[_]],
    @transient val preferredLocations: Seq[String])
  extends Partition {

  override val index: Int = idx
  var partitionValues = rdds.map(rdd => rdd.partitions(idx))
  def partitions: Seq[Partition] = partitionValues

  @throws(classOf[IOException])
  private def writeObject(oos: ObjectOutputStream): Unit = Utils.tryOrIOException {
    // Update the reference to parent split at the time of task serialization
    partitionValues = rdds.map(rdd => rdd.partitions(idx))
    oos.defaultWriteObject()
  }
}

private[spark] abstract class ZippedPartitionsBaseRDD[V: ClassTag](
    sc: SparkContext,
    var rdds: Seq[RDD[_]],
    preservesPartitioning: Boolean = false)
  extends RDD[V](sc, rdds.map(x => new OneToOneDependency(x))) {

  override val partitioner =
    if (preservesPartitioning) firstParent[Any].partitioner else None

  override def getPartitions: Array[Partition] = {
    val numParts = rdds.head.partitions.length
    if (!rdds.forall(rdd => rdd.partitions.length == numParts)) {
      throw new IllegalArgumentException(
        s"Can't zip RDDs with unequal numbers of partitions: ${rdds.map(_.partitions.length)}")
    }
    Array.tabulate[Partition](numParts) { i =>
      val prefs = rdds.map(rdd => rdd.preferredLocations(rdd.partitions(i)))
      // Check whether there are any hosts that match all RDDs; otherwise return the union
      val exactMatchLocations = prefs.reduce((x, y) => x.intersect(y))
      val locs = if (!exactMatchLocations.isEmpty) exactMatchLocations else prefs.flatten.distinct
      new ZippedPartitionsPartition(i, rdds, locs)
    }
  }

  override def getPreferredLocations(s: Partition): Seq[String] = {
    s.asInstanceOf[ZippedPartitionsPartition].preferredLocations
  }

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    rdds = null
  }
}

private[spark] class ZippedPartitionsRDD2[A: ClassTag, B: ClassTag, V: ClassTag](
    sc: SparkContext,
    var f: (Iterator[A], Iterator[B]) => Iterator[V],
    var rdd1: RDD[A],
    var rdd2: RDD[B],
    preservesPartitioning: Boolean = false)
  extends ZippedPartitionsBaseRDD[V](sc, List(rdd1, rdd2), preservesPartitioning) {

  override def compute(s: Partition, context: TaskContext): Iterator[V] = {
    val partitions = s.asInstanceOf[ZippedPartitionsPartition].partitions
    f(rdd1.iterator(partitions(0), context), rdd2.iterator(partitions(1), context))
  }

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    rdd1 = null
    rdd2 = null
    f = null
  }
}

private[spark] class ZippedPartitionsRDD3
  [A: ClassTag, B: ClassTag, C: ClassTag, V: ClassTag](
    sc: SparkContext,
    var f: (Iterator[A], Iterator[B], Iterator[C]) => Iterator[V],
    var rdd1: RDD[A],
    var rdd2: RDD[B],
    var rdd3: RDD[C],
    preservesPartitioning: Boolean = false)
  extends ZippedPartitionsBaseRDD[V](sc, List(rdd1, rdd2, rdd3), preservesPartitioning) {

  override def compute(s: Partition, context: TaskContext): Iterator[V] = {
    val partitions = s.asInstanceOf[ZippedPartitionsPartition].partitions
    f(rdd1.iterator(partitions(0), context),
      rdd2.iterator(partitions(1), context),
      rdd3.iterator(partitions(2), context))
  }

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    rdd1 = null
    rdd2 = null
    rdd3 = null
    f = null
  }
}

private[spark] class ZippedPartitionsRDD4
  [A: ClassTag, B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag](
    sc: SparkContext,
    var f: (Iterator[A], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V],
    var rdd1: RDD[A],
    var rdd2: RDD[B],
    var rdd3: RDD[C],
    var rdd4: RDD[D],
    preservesPartitioning: Boolean = false)
  extends ZippedPartitionsBaseRDD[V](sc, List(rdd1, rdd2, rdd3, rdd4), preservesPartitioning) {

  override def compute(s: Partition, context: TaskContext): Iterator[V] = {
    val partitions = s.asInstanceOf[ZippedPartitionsPartition].partitions
    f(rdd1.iterator(partitions(0), context),
      rdd2.iterator(partitions(1), context),
      rdd3.iterator(partitions(2), context),
      rdd4.iterator(partitions(3), context))
  }

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    rdd1 = null
    rdd2 = null
    rdd3 = null
    rdd4 = null
    f = null
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞