spark KafkaWriter 源码
spark KafkaWriter 代码
文件路径:/connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaWriter.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import org.apache.spark.internal.Logging
import org.apache.spark.sql.{AnalysisException, SparkSession}
import org.apache.spark.sql.catalyst.CatalystTypeConverters
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.execution.QueryExecution
import org.apache.spark.sql.types.{BinaryType, DataType, IntegerType, StringType}
import org.apache.spark.util.Utils
/**
* The [[KafkaWriter]] class is used to write data from a batch query
* or structured streaming query, given by a [[QueryExecution]], to Kafka.
* The data is assumed to have a value column, and an optional topic and key
* columns. If the topic column is missing, then the topic must come from
* the 'topic' configuration option. If the key column is missing, then a
* null valued key field will be added to the
* [[org.apache.kafka.clients.producer.ProducerRecord]].
*/
private[kafka010] object KafkaWriter extends Logging {
val TOPIC_ATTRIBUTE_NAME: String = "topic"
val KEY_ATTRIBUTE_NAME: String = "key"
val VALUE_ATTRIBUTE_NAME: String = "value"
val HEADERS_ATTRIBUTE_NAME: String = "headers"
val PARTITION_ATTRIBUTE_NAME: String = "partition"
override def toString: String = "KafkaWriter"
def validateQuery(
schema: Seq[Attribute],
kafkaParameters: ju.Map[String, Object],
topic: Option[String] = None): Unit = {
try {
topicExpression(schema, topic)
keyExpression(schema)
valueExpression(schema)
headersExpression(schema)
partitionExpression(schema)
} catch {
case e: IllegalStateException => throw new AnalysisException(e.getMessage)
}
}
def write(
sparkSession: SparkSession,
queryExecution: QueryExecution,
kafkaParameters: ju.Map[String, Object],
topic: Option[String] = None): Unit = {
val schema = queryExecution.analyzed.output
validateQuery(schema, kafkaParameters, topic)
queryExecution.toRdd.foreachPartition { iter =>
val writeTask = new KafkaWriteTask(kafkaParameters, schema, topic)
Utils.tryWithSafeFinally(block = writeTask.execute(iter))(
finallyBlock = writeTask.close())
}
}
def topicExpression(schema: Seq[Attribute], topic: Option[String] = None): Expression = {
topic.map(Literal(_)).getOrElse(
expression(schema, TOPIC_ATTRIBUTE_NAME, Seq(StringType)) {
throw new IllegalStateException(s"topic option required when no " +
s"'${TOPIC_ATTRIBUTE_NAME}' attribute is present. Use the " +
s"${KafkaSourceProvider.TOPIC_OPTION_KEY} option for setting a topic.")
}
)
}
def keyExpression(schema: Seq[Attribute]): Expression = {
expression(schema, KEY_ATTRIBUTE_NAME, Seq(StringType, BinaryType)) {
Literal(null, BinaryType)
}
}
def valueExpression(schema: Seq[Attribute]): Expression = {
expression(schema, VALUE_ATTRIBUTE_NAME, Seq(StringType, BinaryType)) {
throw new IllegalStateException(s"Required attribute '${VALUE_ATTRIBUTE_NAME}' not found")
}
}
def headersExpression(schema: Seq[Attribute]): Expression = {
expression(schema, HEADERS_ATTRIBUTE_NAME, Seq(KafkaRecordToRowConverter.headersType)) {
Literal(CatalystTypeConverters.convertToCatalyst(null),
KafkaRecordToRowConverter.headersType)
}
}
def partitionExpression(schema: Seq[Attribute]): Expression = {
expression(schema, PARTITION_ATTRIBUTE_NAME, Seq(IntegerType)) {
Literal(null, IntegerType)
}
}
private def expression(
schema: Seq[Attribute],
attrName: String,
desired: Seq[DataType])(
default: => Expression): Expression = {
val expr = schema.find(_.name == attrName).getOrElse(default)
if (!desired.exists(_.sameType(expr.dataType))) {
throw new IllegalStateException(s"$attrName attribute unsupported type " +
s"${expr.dataType.catalogString}. $attrName must be a(n) " +
s"${desired.map(_.catalogString).mkString(" or ")}")
}
expr
}
}
相关信息
相关文章
spark KafkaBatchPartitionReader 源码
spark KafkaContinuousStream 源码
spark KafkaMicroBatchStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦