spark MapPartitionsRDD 源码

  • 2022-10-20
  • 浏览 (433)

spark MapPartitionsRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/MapPartitionsRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import scala.reflect.ClassTag

import org.apache.spark.{Partition, TaskContext}

/**
 * An RDD that applies the provided function to every partition of the parent RDD.
 *
 * @param prev the parent RDD.
 * @param f The function used to map a tuple of (TaskContext, partition index, input iterator) to
 *          an output iterator.
 * @param preservesPartitioning Whether the input function preserves the partitioner, which should
 *                              be `false` unless `prev` is a pair RDD and the input function
 *                              doesn't modify the keys.
 * @param isFromBarrier Indicates whether this RDD is transformed from an RDDBarrier, a stage
 *                      containing at least one RDDBarrier shall be turned into a barrier stage.
 * @param isOrderSensitive whether or not the function is order-sensitive. If it's order
 *                         sensitive, it may return totally different result when the input order
 *                         is changed. Mostly stateful functions are order-sensitive.
 */
private[spark] class MapPartitionsRDD[U: ClassTag, T: ClassTag](
    var prev: RDD[T],
    f: (TaskContext, Int, Iterator[T]) => Iterator[U],  // (TaskContext, partition index, iterator)
    preservesPartitioning: Boolean = false,
    isFromBarrier: Boolean = false,
    isOrderSensitive: Boolean = false)
  extends RDD[U](prev) {

  override val partitioner = if (preservesPartitioning) firstParent[T].partitioner else None

  override def getPartitions: Array[Partition] = firstParent[T].partitions

  override def compute(split: Partition, context: TaskContext): Iterator[U] =
    f(context, split.index, firstParent[T].iterator(split, context))

  override def clearDependencies(): Unit = {
    super.clearDependencies()
    prev = null
  }

  @transient protected lazy override val isBarrier_ : Boolean =
    isFromBarrier || dependencies.exists(_.rdd.isBarrier())

  override protected def getOutputDeterministicLevel = {
    if (isOrderSensitive && prev.outputDeterministicLevel == DeterministicLevel.UNORDERED) {
      DeterministicLevel.INDETERMINATE
    } else {
      super.getOutputDeterministicLevel
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞