spark CommandResultExec 源码
spark CommandResultExec 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/CommandResultExec.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Attribute, UnsafeProjection}
import org.apache.spark.sql.catalyst.plans.QueryPlan
import org.apache.spark.sql.execution.metric.SQLMetrics
/**
* Physical plan node for holding data from a command.
*
* `commandPhysicalPlan` is just used to display the plan tree for EXPLAIN.
* `rows` may not be serializable and ideally we should not send `rows` to the executors.
* Thus marking them as transient.
*/
case class CommandResultExec(
output: Seq[Attribute],
@transient commandPhysicalPlan: SparkPlan,
@transient rows: Seq[InternalRow]) extends LeafExecNode with InputRDDCodegen {
override lazy val metrics = Map(
"numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))
override def innerChildren: Seq[QueryPlan[_]] = Seq(commandPhysicalPlan)
@transient private lazy val unsafeRows: Array[InternalRow] = {
if (rows.isEmpty) {
Array.empty
} else {
val proj = UnsafeProjection.create(output, output)
rows.map(r => proj(r).copy()).toArray
}
}
@transient private lazy val rdd: RDD[InternalRow] = {
if (rows.isEmpty) {
sparkContext.emptyRDD
} else {
val numSlices = math.min(
unsafeRows.length, session.leafNodeDefaultParallelism)
sparkContext.parallelize(unsafeRows, numSlices)
}
}
override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
rdd.map { r =>
numOutputRows += 1
r
}
}
override protected def stringArgs: Iterator[Any] = {
if (unsafeRows.isEmpty) {
Iterator("<empty>", output)
} else {
Iterator(output)
}
}
override def executeCollect(): Array[InternalRow] = {
longMetric("numOutputRows").add(unsafeRows.size)
unsafeRows
}
override def executeTake(limit: Int): Array[InternalRow] = {
val taken = unsafeRows.take(limit)
longMetric("numOutputRows").add(taken.size)
taken
}
override def executeTail(limit: Int): Array[InternalRow] = {
val taken: Seq[InternalRow] = unsafeRows.takeRight(limit)
longMetric("numOutputRows").add(taken.size)
taken.toArray
}
// Input is already UnsafeRows.
override protected val createUnsafeProjection: Boolean = false
override def inputRDD: RDD[InternalRow] = rdd
}
相关信息
相关文章
spark AggregatingAccumulator 源码
spark AliasAwareOutputExpression 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦