spark CommandResultExec 源码

  • 2022-10-20
  • 浏览 (297)

spark CommandResultExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/CommandResultExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Attribute, UnsafeProjection}
import org.apache.spark.sql.catalyst.plans.QueryPlan
import org.apache.spark.sql.execution.metric.SQLMetrics

/**
 * Physical plan node for holding data from a command.
 *
 * `commandPhysicalPlan` is just used to display the plan tree for EXPLAIN.
 * `rows` may not be serializable and ideally we should not send `rows` to the executors.
 * Thus marking them as transient.
 */
case class CommandResultExec(
    output: Seq[Attribute],
    @transient commandPhysicalPlan: SparkPlan,
    @transient rows: Seq[InternalRow]) extends LeafExecNode with InputRDDCodegen {

  override lazy val metrics = Map(
    "numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))

  override def innerChildren: Seq[QueryPlan[_]] = Seq(commandPhysicalPlan)

  @transient private lazy val unsafeRows: Array[InternalRow] = {
    if (rows.isEmpty) {
      Array.empty
    } else {
      val proj = UnsafeProjection.create(output, output)
      rows.map(r => proj(r).copy()).toArray
    }
  }

  @transient private lazy val rdd: RDD[InternalRow] = {
    if (rows.isEmpty) {
      sparkContext.emptyRDD
    } else {
      val numSlices = math.min(
        unsafeRows.length, session.leafNodeDefaultParallelism)
      sparkContext.parallelize(unsafeRows, numSlices)
    }
  }

  override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    rdd.map { r =>
      numOutputRows += 1
      r
    }
  }

  override protected def stringArgs: Iterator[Any] = {
    if (unsafeRows.isEmpty) {
      Iterator("<empty>", output)
    } else {
      Iterator(output)
    }
  }

  override def executeCollect(): Array[InternalRow] = {
    longMetric("numOutputRows").add(unsafeRows.size)
    unsafeRows
  }

  override def executeTake(limit: Int): Array[InternalRow] = {
    val taken = unsafeRows.take(limit)
    longMetric("numOutputRows").add(taken.size)
    taken
  }

  override def executeTail(limit: Int): Array[InternalRow] = {
    val taken: Seq[InternalRow] = unsafeRows.takeRight(limit)
    longMetric("numOutputRows").add(taken.size)
    taken.toArray
  }

  // Input is already UnsafeRows.
  override protected val createUnsafeProjection: Boolean = false

  override def inputRDD: RDD[InternalRow] = rdd
}

相关信息

spark 源码目录

相关文章

spark AggregatingAccumulator 源码

spark AliasAwareOutputExpression 源码

spark BaseScriptTransformationExec 源码

spark CacheManager 源码

spark CoGroupedIterator 源码

spark CollectMetricsExec 源码

spark Columnar 源码

spark DataSourceScanExec 源码

spark ExistingRDD 源码

spark ExpandExec 源码

0  赞