spark AliasAwareOutputExpression 源码
spark AliasAwareOutputExpression 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/AliasAwareOutputExpression.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.sql.catalyst.expressions.{Alias, Expression, NamedExpression, SortOrder}
import org.apache.spark.sql.catalyst.plans.physical.{HashPartitioning, Partitioning, PartitioningCollection, UnknownPartitioning}
/**
* A trait that provides functionality to handle aliases in the `outputExpressions`.
*/
trait AliasAwareOutputExpression extends UnaryExecNode {
protected def outputExpressions: Seq[NamedExpression]
private lazy val aliasMap = outputExpressions.collect {
case a @ Alias(child, _) => child.canonicalized -> a.toAttribute
}.toMap
protected def hasAlias: Boolean = aliasMap.nonEmpty
protected def normalizeExpression(exp: Expression): Expression = {
exp.transformDown {
case e: Expression => aliasMap.getOrElse(e.canonicalized, e)
}
}
}
/**
* A trait that handles aliases in the `outputExpressions` to produce `outputPartitioning` that
* satisfies distribution requirements.
*/
trait AliasAwareOutputPartitioning extends AliasAwareOutputExpression {
final override def outputPartitioning: Partitioning = {
val normalizedOutputPartitioning = if (hasAlias) {
child.outputPartitioning match {
case e: Expression =>
normalizeExpression(e).asInstanceOf[Partitioning]
case other => other
}
} else {
child.outputPartitioning
}
flattenPartitioning(normalizedOutputPartitioning).filter {
case hashPartitioning: HashPartitioning => hashPartitioning.references.subsetOf(outputSet)
case _ => true
} match {
case Seq() => UnknownPartitioning(child.outputPartitioning.numPartitions)
case Seq(singlePartitioning) => singlePartitioning
case seqWithMultiplePartitionings => PartitioningCollection(seqWithMultiplePartitionings)
}
}
private def flattenPartitioning(partitioning: Partitioning): Seq[Partitioning] = {
partitioning match {
case PartitioningCollection(childPartitionings) =>
childPartitionings.flatMap(flattenPartitioning)
case rest =>
rest +: Nil
}
}
}
/**
* A trait that handles aliases in the `orderingExpressions` to produce `outputOrdering` that
* satisfies ordering requirements.
*/
trait AliasAwareOutputOrdering extends AliasAwareOutputExpression {
protected def orderingExpressions: Seq[SortOrder]
final override def outputOrdering: Seq[SortOrder] = {
if (hasAlias) {
orderingExpressions.map(normalizeExpression(_).asInstanceOf[SortOrder])
} else {
orderingExpressions
}
}
}
相关信息
相关文章
spark AggregatingAccumulator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦