spark AliasAwareOutputExpression 源码

  • 2022-10-20
  • 浏览 (220)

spark AliasAwareOutputExpression 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/AliasAwareOutputExpression.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.sql.execution

import org.apache.spark.sql.catalyst.expressions.{Alias, Expression, NamedExpression, SortOrder}
import org.apache.spark.sql.catalyst.plans.physical.{HashPartitioning, Partitioning, PartitioningCollection, UnknownPartitioning}

/**
 * A trait that provides functionality to handle aliases in the `outputExpressions`.
 */
trait AliasAwareOutputExpression extends UnaryExecNode {
  protected def outputExpressions: Seq[NamedExpression]

  private lazy val aliasMap = outputExpressions.collect {
    case a @ Alias(child, _) => child.canonicalized -> a.toAttribute
  }.toMap

  protected def hasAlias: Boolean = aliasMap.nonEmpty

  protected def normalizeExpression(exp: Expression): Expression = {
    exp.transformDown {
      case e: Expression => aliasMap.getOrElse(e.canonicalized, e)
    }
  }
}

/**
 * A trait that handles aliases in the `outputExpressions` to produce `outputPartitioning` that
 * satisfies distribution requirements.
 */
trait AliasAwareOutputPartitioning extends AliasAwareOutputExpression {
  final override def outputPartitioning: Partitioning = {
    val normalizedOutputPartitioning = if (hasAlias) {
      child.outputPartitioning match {
        case e: Expression =>
          normalizeExpression(e).asInstanceOf[Partitioning]
        case other => other
      }
    } else {
      child.outputPartitioning
    }

    flattenPartitioning(normalizedOutputPartitioning).filter {
      case hashPartitioning: HashPartitioning => hashPartitioning.references.subsetOf(outputSet)
      case _ => true
    } match {
      case Seq() => UnknownPartitioning(child.outputPartitioning.numPartitions)
      case Seq(singlePartitioning) => singlePartitioning
      case seqWithMultiplePartitionings => PartitioningCollection(seqWithMultiplePartitionings)
    }
  }

  private def flattenPartitioning(partitioning: Partitioning): Seq[Partitioning] = {
    partitioning match {
      case PartitioningCollection(childPartitionings) =>
        childPartitionings.flatMap(flattenPartitioning)
      case rest =>
        rest +: Nil
    }
  }
}

/**
 * A trait that handles aliases in the `orderingExpressions` to produce `outputOrdering` that
 * satisfies ordering requirements.
 */
trait AliasAwareOutputOrdering extends AliasAwareOutputExpression {
  protected def orderingExpressions: Seq[SortOrder]

  final override def outputOrdering: Seq[SortOrder] = {
    if (hasAlias) {
      orderingExpressions.map(normalizeExpression(_).asInstanceOf[SortOrder])
    } else {
      orderingExpressions
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatingAccumulator 源码

spark BaseScriptTransformationExec 源码

spark CacheManager 源码

spark CoGroupedIterator 源码

spark CollectMetricsExec 源码

spark Columnar 源码

spark CommandResultExec 源码

spark DataSourceScanExec 源码

spark ExistingRDD 源码

spark ExpandExec 源码

0  赞