spark CoGroupedIterator 源码

  • 2022-10-20
  • 浏览 (209)

spark CoGroupedIterator 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/CoGroupedIterator.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Ascending, Attribute, SortOrder}
import org.apache.spark.sql.catalyst.expressions.codegen.GenerateOrdering

/**
 * Iterates over [[GroupedIterator]]s and returns the cogrouped data, i.e. each record is a
 * grouping key with its associated values from all [[GroupedIterator]]s.
 * Note: we assume the output of each [[GroupedIterator]] is ordered by the grouping key.
 */
class CoGroupedIterator(
    left: Iterator[(InternalRow, Iterator[InternalRow])],
    right: Iterator[(InternalRow, Iterator[InternalRow])],
    groupingSchema: Seq[Attribute])
  extends Iterator[(InternalRow, Iterator[InternalRow], Iterator[InternalRow])] {

  private val keyOrdering =
    GenerateOrdering.generate(groupingSchema.map(SortOrder(_, Ascending)), groupingSchema)

  private var currentLeftData: (InternalRow, Iterator[InternalRow]) = _
  private var currentRightData: (InternalRow, Iterator[InternalRow]) = _

  override def hasNext: Boolean = {
    if (currentLeftData == null && left.hasNext) {
      currentLeftData = left.next()
    }
    if (currentRightData == null && right.hasNext) {
      currentRightData = right.next()
    }

    currentLeftData != null || currentRightData != null
  }

  override def next(): (InternalRow, Iterator[InternalRow], Iterator[InternalRow]) = {
    assert(hasNext)

    if (currentLeftData.eq(null)) {
      // left is null, right is not null, consume the right data.
      rightOnly()
    } else if (currentRightData.eq(null)) {
      // left is not null, right is null, consume the left data.
      leftOnly()
    } else if (currentLeftData._1 == currentRightData._1) {
      // left and right have the same grouping key, consume both of them.
      val result = (currentLeftData._1, currentLeftData._2, currentRightData._2)
      currentLeftData = null
      currentRightData = null
      result
    } else {
      val compare = keyOrdering.compare(currentLeftData._1, currentRightData._1)
      assert(compare != 0)
      if (compare < 0) {
        // the grouping key of left is smaller, consume the left data.
        leftOnly()
      } else {
        // the grouping key of right is smaller, consume the right data.
        rightOnly()
      }
    }
  }

  private def leftOnly(): (InternalRow, Iterator[InternalRow], Iterator[InternalRow]) = {
    val result = (currentLeftData._1, currentLeftData._2, Iterator.empty)
    currentLeftData = null
    result
  }

  private def rightOnly(): (InternalRow, Iterator[InternalRow], Iterator[InternalRow]) = {
    val result = (currentRightData._1, Iterator.empty, currentRightData._2)
    currentRightData = null
    result
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatingAccumulator 源码

spark AliasAwareOutputExpression 源码

spark BaseScriptTransformationExec 源码

spark CacheManager 源码

spark CollectMetricsExec 源码

spark Columnar 源码

spark CommandResultExec 源码

spark DataSourceScanExec 源码

spark ExistingRDD 源码

spark ExpandExec 源码

0  赞