spark AvroOptions 源码

  • 2022-10-20
  • 浏览 (327)

spark AvroOptions 代码

文件路径:/connector/avro/src/main/scala/org/apache/spark/sql/avro/AvroOptions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.avro

import java.net.URI

import org.apache.avro.Schema
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}

import org.apache.spark.internal.Logging
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.{DataSourceOptions, FileSourceOptions}
import org.apache.spark.sql.catalyst.util.{CaseInsensitiveMap, FailFastMode, ParseMode}
import org.apache.spark.sql.internal.SQLConf

/**
 * Options for Avro Reader and Writer stored in case insensitive manner.
 */
private[sql] class AvroOptions(
    @transient val parameters: CaseInsensitiveMap[String],
    @transient val conf: Configuration)
  extends FileSourceOptions(parameters) with Logging {

  import AvroOptions._

  def this(parameters: Map[String, String], conf: Configuration) = {
    this(CaseInsensitiveMap(parameters), conf)
  }

  /**
   * Optional schema provided by a user in schema file or in JSON format.
   *
   * When reading Avro, this option can be set to an evolved schema, which is compatible but
   * different with the actual Avro schema. The deserialization schema will be consistent with
   * the evolved schema. For example, if we set an evolved schema containing one additional
   * column with a default value, the reading result in Spark will contain the new column too.
   *
   * When writing Avro, this option can be set if the expected output Avro schema doesn't match the
   * schema converted by Spark. For example, the expected schema of one column is of "enum" type,
   * instead of "string" type in the default converted schema.
   */
  val schema: Option[Schema] = {
    parameters.get(AVRO_SCHEMA).map(new Schema.Parser().setValidateDefaults(false).parse).orElse({
      val avroUrlSchema = parameters.get(AVRO_SCHEMA_URL).map(url => {
        log.debug("loading avro schema from url: " + url)
        val fs = FileSystem.get(new URI(url), conf)
        val in = fs.open(new Path(url))
        try {
          new Schema.Parser().setValidateDefaults(false).parse(in)
        } finally {
          in.close()
        }
      })
      avroUrlSchema
    })
  }

  /**
   * Iff true, perform Catalyst-to-Avro schema matching based on field position instead of field
   * name. This allows for a structurally equivalent Catalyst schema to be used with an Avro schema
   * whose field names do not match. Defaults to false.
   */
  val positionalFieldMatching: Boolean =
    parameters.get(POSITIONAL_FIELD_MATCHING).exists(_.toBoolean)

  /**
   * Top level record name in write result, which is required in Avro spec.
   * See https://avro.apache.org/docs/1.11.1/specification/#schema-record .
   * Default value is "topLevelRecord"
   */
  val recordName: String = parameters.getOrElse(RECORD_NAME, "topLevelRecord")

  /**
   * Record namespace in write result. Default value is "".
   * See Avro spec for details: https://avro.apache.org/docs/1.11.1/specification/#schema-record .
   */
  val recordNamespace: String = parameters.getOrElse(RECORD_NAMESPACE, "")

  /**
   * The `ignoreExtension` option controls ignoring of files without `.avro` extensions in read.
   * If the option is enabled, all files (with and without `.avro` extension) are loaded.
   * If the option is not set, the Hadoop's config `avro.mapred.ignore.inputs.without.extension`
   * is taken into account. If the former one is not set too, file extensions are ignored.
   */
  @deprecated("Use the general data source option pathGlobFilter for filtering file names", "3.0")
  val ignoreExtension: Boolean = {
    val ignoreFilesWithoutExtensionByDefault = false
    val ignoreFilesWithoutExtension = conf.getBoolean(
      AvroFileFormat.IgnoreFilesWithoutExtensionProperty,
      ignoreFilesWithoutExtensionByDefault)

    parameters
      .get(IGNORE_EXTENSION)
      .map(_.toBoolean)
      .getOrElse(!ignoreFilesWithoutExtension)
  }

  /**
   * The `compression` option allows to specify a compression codec used in write.
   * Currently supported codecs are `uncompressed`, `snappy`, `deflate`, `bzip2`, `xz` and
   * `zstandard`. If the option is not set, the `spark.sql.avro.compression.codec` config is
   * taken into account. If the former one is not set too, the `snappy` codec is used by default.
   */
  val compression: String = {
    parameters.get(COMPRESSION).getOrElse(SQLConf.get.avroCompressionCodec)
  }

  val parseMode: ParseMode =
    parameters.get(MODE).map(ParseMode.fromString).getOrElse(FailFastMode)

  /**
   * The rebasing mode for the DATE and TIMESTAMP_MICROS, TIMESTAMP_MILLIS values in reads.
   */
  val datetimeRebaseModeInRead: String = parameters
    .get(DATETIME_REBASE_MODE)
    .getOrElse(SQLConf.get.getConf(SQLConf.AVRO_REBASE_MODE_IN_READ))
}

private[sql] object AvroOptions extends DataSourceOptions {
  def apply(parameters: Map[String, String]): AvroOptions = {
    val hadoopConf = SparkSession
      .getActiveSession
      .map(_.sessionState.newHadoopConf())
      .getOrElse(new Configuration())
    new AvroOptions(CaseInsensitiveMap(parameters), hadoopConf)
  }

  val IGNORE_EXTENSION = newOption("ignoreExtension")
  val MODE = newOption("mode")
  val RECORD_NAME = newOption("recordName")
  val COMPRESSION = newOption("compression")
  val AVRO_SCHEMA = newOption("avroSchema")
  val AVRO_SCHEMA_URL = newOption("avroSchemaUrl")
  val RECORD_NAMESPACE = newOption("recordNamespace")
  val POSITIONAL_FIELD_MATCHING = newOption("positionalFieldMatching")
  // The option controls rebasing of the DATE and TIMESTAMP values between
  // Julian and Proleptic Gregorian calendars. It impacts on the behaviour of the Avro
  // datasource similarly to the SQL config `spark.sql.avro.datetimeRebaseModeInRead`,
  // and can be set to the same values: `EXCEPTION`, `LEGACY` or `CORRECTED`.
  val DATETIME_REBASE_MODE = newOption("datetimeRebaseMode")
}

相关信息

spark 源码目录

相关文章

spark AvroDataToCatalyst 源码

spark AvroDeserializer 源码

spark AvroFileFormat 源码

spark AvroOutputWriter 源码

spark AvroOutputWriterFactory 源码

spark AvroSerializer 源码

spark AvroUtils 源码

spark CatalystDataToAvro 源码

spark SchemaConverters 源码

spark functions 源码

0  赞