spark AvroDataToCatalyst 源码
spark AvroDataToCatalyst 代码
文件路径:/connector/avro/src/main/scala/org/apache/spark/sql/avro/AvroDataToCatalyst.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.avro
import scala.util.control.NonFatal
import org.apache.avro.Schema
import org.apache.avro.generic.GenericDatumReader
import org.apache.avro.io.{BinaryDecoder, DecoderFactory}
import org.apache.spark.SparkException
import org.apache.spark.sql.AnalysisException
import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression, SpecificInternalRow, UnaryExpression}
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, CodeGenerator, ExprCode}
import org.apache.spark.sql.catalyst.util.{FailFastMode, ParseMode, PermissiveMode}
import org.apache.spark.sql.types._
private[avro] case class AvroDataToCatalyst(
child: Expression,
jsonFormatSchema: String,
options: Map[String, String])
extends UnaryExpression with ExpectsInputTypes {
override def inputTypes: Seq[AbstractDataType] = Seq(BinaryType)
override lazy val dataType: DataType = {
val dt = SchemaConverters.toSqlType(expectedSchema).dataType
parseMode match {
// With PermissiveMode, the output Catalyst row might contain columns of null values for
// corrupt records, even if some of the columns are not nullable in the user-provided schema.
// Therefore we force the schema to be all nullable here.
case PermissiveMode => dt.asNullable
case _ => dt
}
}
override def nullable: Boolean = true
private lazy val avroOptions = AvroOptions(options)
@transient private lazy val actualSchema =
new Schema.Parser().setValidateDefaults(false).parse(jsonFormatSchema)
@transient private lazy val expectedSchema = avroOptions.schema.getOrElse(actualSchema)
@transient private lazy val reader = new GenericDatumReader[Any](actualSchema, expectedSchema)
@transient private lazy val deserializer =
new AvroDeserializer(expectedSchema, dataType, avroOptions.datetimeRebaseModeInRead)
@transient private var decoder: BinaryDecoder = _
@transient private var result: Any = _
@transient private lazy val parseMode: ParseMode = {
val mode = avroOptions.parseMode
if (mode != PermissiveMode && mode != FailFastMode) {
throw new AnalysisException(unacceptableModeMessage(mode.name))
}
mode
}
private def unacceptableModeMessage(name: String): String = {
s"from_avro() doesn't support the $name mode. " +
s"Acceptable modes are ${PermissiveMode.name} and ${FailFastMode.name}."
}
@transient private lazy val nullResultRow: Any = dataType match {
case st: StructType =>
val resultRow = new SpecificInternalRow(st.map(_.dataType))
for(i <- 0 until st.length) {
resultRow.setNullAt(i)
}
resultRow
case _ =>
null
}
override def nullSafeEval(input: Any): Any = {
val binary = input.asInstanceOf[Array[Byte]]
try {
decoder = DecoderFactory.get().binaryDecoder(binary, 0, binary.length, decoder)
result = reader.read(result, decoder)
val deserialized = deserializer.deserialize(result)
assert(deserialized.isDefined,
"Avro deserializer cannot return an empty result because filters are not pushed down")
deserialized.get
} catch {
// There could be multiple possible exceptions here, e.g. java.io.IOException,
// AvroRuntimeException, ArrayIndexOutOfBoundsException, etc.
// To make it simple, catch all the exceptions here.
case NonFatal(e) => parseMode match {
case PermissiveMode => nullResultRow
case FailFastMode =>
throw new SparkException("Malformed records are detected in record parsing. " +
s"Current parse Mode: ${FailFastMode.name}. To process malformed records as null " +
"result, try setting the option 'mode' as 'PERMISSIVE'.", e)
case _ =>
throw new AnalysisException(unacceptableModeMessage(parseMode.name))
}
}
}
override def prettyName: String = "from_avro"
override protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = {
val expr = ctx.addReferenceObj("this", this)
nullSafeCodeGen(ctx, ev, eval => {
val result = ctx.freshName("result")
val dt = CodeGenerator.boxedType(dataType)
s"""
$dt $result = ($dt) $expr.nullSafeEval($eval);
if ($result == null) {
${ev.isNull} = true;
} else {
${ev.value} = $result;
}
"""
})
}
override protected def withNewChildInternal(newChild: Expression): AvroDataToCatalyst =
copy(child = newChild)
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦