spark SchemaConverters 源码

  • 2022-10-20
  • 浏览 (581)

spark SchemaConverters 代码

文件路径:/connector/avro/src/main/scala/org/apache/spark/sql/avro/SchemaConverters.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.avro

import scala.collection.JavaConverters._

import org.apache.avro.{LogicalTypes, Schema, SchemaBuilder}
import org.apache.avro.LogicalTypes.{Date, Decimal, LocalTimestampMicros, LocalTimestampMillis, TimestampMicros, TimestampMillis}
import org.apache.avro.Schema.Type._

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.sql.catalyst.parser.CatalystSqlParser
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.Decimal.minBytesForPrecision

/**
 * This object contains method that are used to convert sparkSQL schemas to avro schemas and vice
 * versa.
 */
@DeveloperApi
object SchemaConverters {
  private lazy val nullSchema = Schema.create(Schema.Type.NULL)

  /**
   * Internal wrapper for SQL data type and nullability.
   *
   * @since 2.4.0
   */
  case class SchemaType(dataType: DataType, nullable: Boolean)

  /**
   * Converts an Avro schema to a corresponding Spark SQL schema.
   *
   * @since 2.4.0
   */
  def toSqlType(avroSchema: Schema): SchemaType = {
    toSqlTypeHelper(avroSchema, Set.empty)
  }

  // The property specifies Catalyst type of the given field
  private val CATALYST_TYPE_PROP_NAME = "spark.sql.catalyst.type"

  private def toSqlTypeHelper(avroSchema: Schema, existingRecordNames: Set[String]): SchemaType = {
    avroSchema.getType match {
      case INT => avroSchema.getLogicalType match {
        case _: Date => SchemaType(DateType, nullable = false)
        case _ =>
          val catalystTypeAttrValue = avroSchema.getProp(CATALYST_TYPE_PROP_NAME)
          val catalystType = if (catalystTypeAttrValue == null) {
            IntegerType
          } else {
            CatalystSqlParser.parseDataType(catalystTypeAttrValue)
          }
          SchemaType(catalystType, nullable = false)
      }
      case STRING => SchemaType(StringType, nullable = false)
      case BOOLEAN => SchemaType(BooleanType, nullable = false)
      case BYTES | FIXED => avroSchema.getLogicalType match {
        // For FIXED type, if the precision requires more bytes than fixed size, the logical
        // type will be null, which is handled by Avro library.
        case d: Decimal => SchemaType(DecimalType(d.getPrecision, d.getScale), nullable = false)
        case _ => SchemaType(BinaryType, nullable = false)
      }

      case DOUBLE => SchemaType(DoubleType, nullable = false)
      case FLOAT => SchemaType(FloatType, nullable = false)
      case LONG => avroSchema.getLogicalType match {
        case _: TimestampMillis | _: TimestampMicros => SchemaType(TimestampType, nullable = false)
        case _: LocalTimestampMillis | _: LocalTimestampMicros =>
          SchemaType(TimestampNTZType, nullable = false)
        case _ =>
          val catalystTypeAttrValue = avroSchema.getProp(CATALYST_TYPE_PROP_NAME)
          val catalystType = if (catalystTypeAttrValue == null) {
            LongType
          } else {
            CatalystSqlParser.parseDataType(catalystTypeAttrValue)
          }
          SchemaType(catalystType, nullable = false)
      }

      case ENUM => SchemaType(StringType, nullable = false)

      case NULL => SchemaType(NullType, nullable = true)

      case RECORD =>
        if (existingRecordNames.contains(avroSchema.getFullName)) {
          throw new IncompatibleSchemaException(s"""
            |Found recursive reference in Avro schema, which can not be processed by Spark:
            |${avroSchema.toString(true)}
          """.stripMargin)
        }
        val newRecordNames = existingRecordNames + avroSchema.getFullName
        val fields = avroSchema.getFields.asScala.map { f =>
          val schemaType = toSqlTypeHelper(f.schema(), newRecordNames)
          StructField(f.name, schemaType.dataType, schemaType.nullable)
        }

        SchemaType(StructType(fields.toSeq), nullable = false)

      case ARRAY =>
        val schemaType = toSqlTypeHelper(avroSchema.getElementType, existingRecordNames)
        SchemaType(
          ArrayType(schemaType.dataType, containsNull = schemaType.nullable),
          nullable = false)

      case MAP =>
        val schemaType = toSqlTypeHelper(avroSchema.getValueType, existingRecordNames)
        SchemaType(
          MapType(StringType, schemaType.dataType, valueContainsNull = schemaType.nullable),
          nullable = false)

      case UNION =>
        if (avroSchema.getTypes.asScala.exists(_.getType == NULL)) {
          // In case of a union with null, eliminate it and make a recursive call
          val remainingUnionTypes = avroSchema.getTypes.asScala.filterNot(_.getType == NULL)
          if (remainingUnionTypes.size == 1) {
            toSqlTypeHelper(remainingUnionTypes.head, existingRecordNames).copy(nullable = true)
          } else {
            toSqlTypeHelper(Schema.createUnion(remainingUnionTypes.asJava), existingRecordNames)
              .copy(nullable = true)
          }
        } else avroSchema.getTypes.asScala.map(_.getType).toSeq match {
          case Seq(t1) =>
            toSqlTypeHelper(avroSchema.getTypes.get(0), existingRecordNames)
          case Seq(t1, t2) if Set(t1, t2) == Set(INT, LONG) =>
            SchemaType(LongType, nullable = false)
          case Seq(t1, t2) if Set(t1, t2) == Set(FLOAT, DOUBLE) =>
            SchemaType(DoubleType, nullable = false)
          case _ =>
            // Convert complex unions to struct types where field names are member0, member1, etc.
            // This is consistent with the behavior when converting between Avro and Parquet.
            val fields = avroSchema.getTypes.asScala.zipWithIndex.map {
              case (s, i) =>
                val schemaType = toSqlTypeHelper(s, existingRecordNames)
                // All fields are nullable because only one of them is set at a time
                StructField(s"member$i", schemaType.dataType, nullable = true)
            }

            SchemaType(StructType(fields.toSeq), nullable = false)
        }

      case other => throw new IncompatibleSchemaException(s"Unsupported type $other")
    }
  }

  /**
   * Converts a Spark SQL schema to a corresponding Avro schema.
   *
   * @since 2.4.0
   */
  def toAvroType(
      catalystType: DataType,
      nullable: Boolean = false,
      recordName: String = "topLevelRecord",
      nameSpace: String = "")
    : Schema = {
    val builder = SchemaBuilder.builder()

    val schema = catalystType match {
      case BooleanType => builder.booleanType()
      case ByteType | ShortType | IntegerType => builder.intType()
      case LongType => builder.longType()
      case DateType =>
        LogicalTypes.date().addToSchema(builder.intType())
      case TimestampType =>
        LogicalTypes.timestampMicros().addToSchema(builder.longType())
      case TimestampNTZType =>
        LogicalTypes.localTimestampMicros().addToSchema(builder.longType())

      case FloatType => builder.floatType()
      case DoubleType => builder.doubleType()
      case StringType => builder.stringType()
      case NullType => builder.nullType()
      case d: DecimalType =>
        val avroType = LogicalTypes.decimal(d.precision, d.scale)
        val fixedSize = minBytesForPrecision(d.precision)
        // Need to avoid naming conflict for the fixed fields
        val name = nameSpace match {
          case "" => s"$recordName.fixed"
          case _ => s"$nameSpace.$recordName.fixed"
        }
        avroType.addToSchema(SchemaBuilder.fixed(name).size(fixedSize))

      case BinaryType => builder.bytesType()
      case ArrayType(et, containsNull) =>
        builder.array()
          .items(toAvroType(et, containsNull, recordName, nameSpace))
      case MapType(StringType, vt, valueContainsNull) =>
        builder.map()
          .values(toAvroType(vt, valueContainsNull, recordName, nameSpace))
      case st: StructType =>
        val childNameSpace = if (nameSpace != "") s"$nameSpace.$recordName" else recordName
        val fieldsAssembler = builder.record(recordName).namespace(nameSpace).fields()
        st.foreach { f =>
          val fieldAvroType =
            toAvroType(f.dataType, f.nullable, f.name, childNameSpace)
          fieldsAssembler.name(f.name).`type`(fieldAvroType).noDefault()
        }
        fieldsAssembler.endRecord()

      case ym: YearMonthIntervalType =>
        val ymIntervalType = builder.intType()
        ymIntervalType.addProp(CATALYST_TYPE_PROP_NAME, ym.typeName)
        ymIntervalType
      case dt: DayTimeIntervalType =>
        val dtIntervalType = builder.longType()
        dtIntervalType.addProp(CATALYST_TYPE_PROP_NAME, dt.typeName)
        dtIntervalType

      // This should never happen.
      case other => throw new IncompatibleSchemaException(s"Unexpected type $other.")
    }
    if (nullable && catalystType != NullType) {
      Schema.createUnion(schema, nullSchema)
    } else {
      schema
    }
  }
}

private[avro] class IncompatibleSchemaException(
  msg: String, ex: Throwable = null) extends Exception(msg, ex)

private[avro] class UnsupportedAvroTypeException(msg: String) extends Exception(msg)

相关信息

spark 源码目录

相关文章

spark AvroDataToCatalyst 源码

spark AvroDeserializer 源码

spark AvroFileFormat 源码

spark AvroOptions 源码

spark AvroOutputWriter 源码

spark AvroOutputWriterFactory 源码

spark AvroSerializer 源码

spark AvroUtils 源码

spark CatalystDataToAvro 源码

spark functions 源码

0  赞