spark AvroSerializer 源码
spark AvroSerializer 代码
文件路径:/connector/avro/src/main/scala/org/apache/spark/sql/avro/AvroSerializer.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.avro
import java.nio.ByteBuffer
import scala.collection.JavaConverters._
import org.apache.avro.Conversions.DecimalConversion
import org.apache.avro.LogicalTypes
import org.apache.avro.LogicalTypes.{LocalTimestampMicros, LocalTimestampMillis, TimestampMicros, TimestampMillis}
import org.apache.avro.Schema
import org.apache.avro.Schema.Type
import org.apache.avro.Schema.Type._
import org.apache.avro.generic.GenericData.{EnumSymbol, Fixed}
import org.apache.avro.generic.GenericData.Record
import org.apache.avro.util.Utf8
import org.apache.spark.internal.Logging
import org.apache.spark.sql.avro.AvroUtils.{toFieldStr, AvroMatchedField}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{SpecializedGetters, SpecificInternalRow}
import org.apache.spark.sql.catalyst.util.DateTimeUtils
import org.apache.spark.sql.execution.datasources.DataSourceUtils
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.internal.SQLConf.LegacyBehaviorPolicy
import org.apache.spark.sql.types._
/**
* A serializer to serialize data in catalyst format to data in avro format.
*/
private[sql] class AvroSerializer(
rootCatalystType: DataType,
rootAvroType: Schema,
nullable: Boolean,
positionalFieldMatch: Boolean,
datetimeRebaseMode: LegacyBehaviorPolicy.Value) extends Logging {
def this(rootCatalystType: DataType, rootAvroType: Schema, nullable: Boolean) = {
this(rootCatalystType, rootAvroType, nullable, positionalFieldMatch = false,
LegacyBehaviorPolicy.withName(SQLConf.get.getConf(SQLConf.AVRO_REBASE_MODE_IN_WRITE)))
}
def serialize(catalystData: Any): Any = {
converter.apply(catalystData)
}
private val dateRebaseFunc = DataSourceUtils.createDateRebaseFuncInWrite(
datetimeRebaseMode, "Avro")
private val timestampRebaseFunc = DataSourceUtils.createTimestampRebaseFuncInWrite(
datetimeRebaseMode, "Avro")
private val converter: Any => Any = {
val actualAvroType = resolveNullableType(rootAvroType, nullable)
val baseConverter = try {
rootCatalystType match {
case st: StructType =>
newStructConverter(st, actualAvroType, Nil, Nil).asInstanceOf[Any => Any]
case _ =>
val tmpRow = new SpecificInternalRow(Seq(rootCatalystType))
val converter = newConverter(rootCatalystType, actualAvroType, Nil, Nil)
(data: Any) =>
tmpRow.update(0, data)
converter.apply(tmpRow, 0)
}
} catch {
case ise: IncompatibleSchemaException => throw new IncompatibleSchemaException(
s"Cannot convert SQL type ${rootCatalystType.sql} to Avro type $rootAvroType.", ise)
}
if (nullable) {
(data: Any) =>
if (data == null) {
null
} else {
baseConverter.apply(data)
}
} else {
baseConverter
}
}
private type Converter = (SpecializedGetters, Int) => Any
private lazy val decimalConversions = new DecimalConversion()
private def newConverter(
catalystType: DataType,
avroType: Schema,
catalystPath: Seq[String],
avroPath: Seq[String]): Converter = {
val errorPrefix = s"Cannot convert SQL ${toFieldStr(catalystPath)} " +
s"to Avro ${toFieldStr(avroPath)} because "
(catalystType, avroType.getType) match {
case (NullType, NULL) =>
(getter, ordinal) => null
case (BooleanType, BOOLEAN) =>
(getter, ordinal) => getter.getBoolean(ordinal)
case (ByteType, INT) =>
(getter, ordinal) => getter.getByte(ordinal).toInt
case (ShortType, INT) =>
(getter, ordinal) => getter.getShort(ordinal).toInt
case (IntegerType, INT) =>
(getter, ordinal) => getter.getInt(ordinal)
case (LongType, LONG) =>
(getter, ordinal) => getter.getLong(ordinal)
case (FloatType, FLOAT) =>
(getter, ordinal) => getter.getFloat(ordinal)
case (DoubleType, DOUBLE) =>
(getter, ordinal) => getter.getDouble(ordinal)
case (d: DecimalType, FIXED)
if avroType.getLogicalType == LogicalTypes.decimal(d.precision, d.scale) =>
(getter, ordinal) =>
val decimal = getter.getDecimal(ordinal, d.precision, d.scale)
decimalConversions.toFixed(decimal.toJavaBigDecimal, avroType,
LogicalTypes.decimal(d.precision, d.scale))
case (d: DecimalType, BYTES)
if avroType.getLogicalType == LogicalTypes.decimal(d.precision, d.scale) =>
(getter, ordinal) =>
val decimal = getter.getDecimal(ordinal, d.precision, d.scale)
decimalConversions.toBytes(decimal.toJavaBigDecimal, avroType,
LogicalTypes.decimal(d.precision, d.scale))
case (StringType, ENUM) =>
val enumSymbols: Set[String] = avroType.getEnumSymbols.asScala.toSet
(getter, ordinal) =>
val data = getter.getUTF8String(ordinal).toString
if (!enumSymbols.contains(data)) {
throw new IncompatibleSchemaException(errorPrefix +
s""""$data" cannot be written since it's not defined in enum """ +
enumSymbols.mkString("\"", "\", \"", "\""))
}
new EnumSymbol(avroType, data)
case (StringType, STRING) =>
(getter, ordinal) => new Utf8(getter.getUTF8String(ordinal).getBytes)
case (BinaryType, FIXED) =>
val size = avroType.getFixedSize
(getter, ordinal) =>
val data: Array[Byte] = getter.getBinary(ordinal)
if (data.length != size) {
def len2str(len: Int): String = s"$len ${if (len > 1) "bytes" else "byte"}"
throw new IncompatibleSchemaException(errorPrefix + len2str(data.length) +
" of binary data cannot be written into FIXED type with size of " + len2str(size))
}
new Fixed(avroType, data)
case (BinaryType, BYTES) =>
(getter, ordinal) => ByteBuffer.wrap(getter.getBinary(ordinal))
case (DateType, INT) =>
(getter, ordinal) => dateRebaseFunc(getter.getInt(ordinal))
case (TimestampType, LONG) => avroType.getLogicalType match {
// For backward compatibility, if the Avro type is Long and it is not logical type
// (the `null` case), output the timestamp value as with millisecond precision.
case null | _: TimestampMillis => (getter, ordinal) =>
DateTimeUtils.microsToMillis(timestampRebaseFunc(getter.getLong(ordinal)))
case _: TimestampMicros => (getter, ordinal) =>
timestampRebaseFunc(getter.getLong(ordinal))
case other => throw new IncompatibleSchemaException(errorPrefix +
s"SQL type ${TimestampType.sql} cannot be converted to Avro logical type $other")
}
case (TimestampNTZType, LONG) => avroType.getLogicalType match {
// To keep consistent with TimestampType, if the Avro type is Long and it is not
// logical type (the `null` case), output the TimestampNTZ as long value
// in millisecond precision.
case null | _: LocalTimestampMillis => (getter, ordinal) =>
DateTimeUtils.microsToMillis(getter.getLong(ordinal))
case _: LocalTimestampMicros => (getter, ordinal) =>
getter.getLong(ordinal)
case other => throw new IncompatibleSchemaException(errorPrefix +
s"SQL type ${TimestampNTZType.sql} cannot be converted to Avro logical type $other")
}
case (ArrayType(et, containsNull), ARRAY) =>
val elementConverter = newConverter(
et, resolveNullableType(avroType.getElementType, containsNull),
catalystPath :+ "element", avroPath :+ "element")
(getter, ordinal) => {
val arrayData = getter.getArray(ordinal)
val len = arrayData.numElements()
val result = new Array[Any](len)
var i = 0
while (i < len) {
if (containsNull && arrayData.isNullAt(i)) {
result(i) = null
} else {
result(i) = elementConverter(arrayData, i)
}
i += 1
}
// avro writer is expecting a Java Collection, so we convert it into
// `ArrayList` backed by the specified array without data copying.
java.util.Arrays.asList(result: _*)
}
case (st: StructType, RECORD) =>
val structConverter = newStructConverter(st, avroType, catalystPath, avroPath)
val numFields = st.length
(getter, ordinal) => structConverter(getter.getStruct(ordinal, numFields))
case (MapType(kt, vt, valueContainsNull), MAP) if kt == StringType =>
val valueConverter = newConverter(
vt, resolveNullableType(avroType.getValueType, valueContainsNull),
catalystPath :+ "value", avroPath :+ "value")
(getter, ordinal) =>
val mapData = getter.getMap(ordinal)
val len = mapData.numElements()
val result = new java.util.HashMap[String, Any](len)
val keyArray = mapData.keyArray()
val valueArray = mapData.valueArray()
var i = 0
while (i < len) {
val key = keyArray.getUTF8String(i).toString
if (valueContainsNull && valueArray.isNullAt(i)) {
result.put(key, null)
} else {
result.put(key, valueConverter(valueArray, i))
}
i += 1
}
result
case (_: YearMonthIntervalType, INT) =>
(getter, ordinal) => getter.getInt(ordinal)
case (_: DayTimeIntervalType, LONG) =>
(getter, ordinal) => getter.getLong(ordinal)
case _ =>
throw new IncompatibleSchemaException(errorPrefix +
s"schema is incompatible (sqlType = ${catalystType.sql}, avroType = $avroType)")
}
}
private def newStructConverter(
catalystStruct: StructType,
avroStruct: Schema,
catalystPath: Seq[String],
avroPath: Seq[String]): InternalRow => Record = {
val avroSchemaHelper = new AvroUtils.AvroSchemaHelper(
avroStruct, catalystStruct, avroPath, catalystPath, positionalFieldMatch)
avroSchemaHelper.validateNoExtraCatalystFields(ignoreNullable = false)
avroSchemaHelper.validateNoExtraRequiredAvroFields()
val (avroIndices, fieldConverters) = avroSchemaHelper.matchedFields.map {
case AvroMatchedField(catalystField, _, avroField) =>
val converter = newConverter(catalystField.dataType,
resolveNullableType(avroField.schema(), catalystField.nullable),
catalystPath :+ catalystField.name, avroPath :+ avroField.name)
(avroField.pos(), converter)
}.toArray.unzip
val numFields = catalystStruct.length
row: InternalRow =>
val result = new Record(avroStruct)
var i = 0
while (i < numFields) {
if (row.isNullAt(i)) {
result.put(avroIndices(i), null)
} else {
result.put(avroIndices(i), fieldConverters(i).apply(row, i))
}
i += 1
}
result
}
/**
* Resolve a possibly nullable Avro Type.
*
* An Avro type is nullable when it is a [[UNION]] of two types: one null type and another
* non-null type. This method will check the nullability of the input Avro type and return the
* non-null type within when it is nullable. Otherwise it will return the input Avro type
* unchanged. It will throw an [[UnsupportedAvroTypeException]] when the input Avro type is an
* unsupported nullable type.
*
* It will also log a warning message if the nullability for Avro and catalyst types are
* different.
*/
private def resolveNullableType(avroType: Schema, nullable: Boolean): Schema = {
val (avroNullable, resolvedAvroType) = resolveAvroType(avroType)
warnNullabilityDifference(avroNullable, nullable)
resolvedAvroType
}
/**
* Check the nullability of the input Avro type and resolve it when it is nullable. The first
* return value is a [[Boolean]] indicating if the input Avro type is nullable. The second
* return value is the possibly resolved type.
*/
private def resolveAvroType(avroType: Schema): (Boolean, Schema) = {
if (avroType.getType == Type.UNION) {
val fields = avroType.getTypes.asScala
val actualType = fields.filter(_.getType != Type.NULL)
if (fields.length != 2 || actualType.length != 1) {
throw new UnsupportedAvroTypeException(
s"Unsupported Avro UNION type $avroType: Only UNION of a null type and a non-null " +
"type is supported")
}
(true, actualType.head)
} else {
(false, avroType)
}
}
/**
* log a warning message if the nullability for Avro and catalyst types are different.
*/
private def warnNullabilityDifference(avroNullable: Boolean, catalystNullable: Boolean): Unit = {
if (avroNullable && !catalystNullable) {
logWarning("Writing Avro files with nullable Avro schema and non-nullable catalyst schema.")
}
if (!avroNullable && catalystNullable) {
logWarning("Writing Avro files with non-nullable Avro schema and nullable catalyst " +
"schema will throw runtime exception if there is a record with null value.")
}
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦