tidb table 源码
tidb table 代码
文件路径:/statistics/table.go
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"fmt"
"math"
"strings"
"sync"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/collate"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tidb/util/mathutil"
"github.com/pingcap/tidb/util/ranger"
"github.com/pingcap/tidb/util/tracing"
"go.uber.org/atomic"
"go.uber.org/zap"
"golang.org/x/exp/slices"
)
const (
pseudoEqualRate = 1000
pseudoLessRate = 3
pseudoBetweenRate = 40
pseudoColSize = 8.0
outOfRangeBetweenRate = 100
)
const (
// PseudoVersion means the pseudo statistics version is 0.
PseudoVersion uint64 = 0
// PseudoRowCount export for other pkg to use.
// When we haven't analyzed a table, we use pseudo statistics to estimate costs.
// It has row count 10000, equal condition selects 1/1000 of total rows, less condition selects 1/3 of total rows,
// between condition selects 1/40 of total rows.
PseudoRowCount = 10000
)
// Table represents statistics for a table.
type Table struct {
HistColl
Version uint64
Name string
ExtendedStats *ExtendedStatsColl
// TblInfoUpdateTS is the UpdateTS of the TableInfo used when filling this struct.
// It is the schema version of the corresponding table. It is used to skip redundant
// loading of stats, i.e, if the cached stats is already update-to-date with mysql.stats_xxx tables,
// and the schema of the table does not change, we don't need to load the stats for this
// table again.
TblInfoUpdateTS uint64
}
// ExtendedStatsItem is the cached item of a mysql.stats_extended record.
type ExtendedStatsItem struct {
ColIDs []int64
Tp uint8
ScalarVals float64
StringVals string
}
// ExtendedStatsColl is a collection of cached items for mysql.stats_extended records.
type ExtendedStatsColl struct {
Stats map[string]*ExtendedStatsItem
LastUpdateVersion uint64
}
// NewExtendedStatsColl allocate an ExtendedStatsColl struct.
func NewExtendedStatsColl() *ExtendedStatsColl {
return &ExtendedStatsColl{Stats: make(map[string]*ExtendedStatsItem)}
}
// HistColl is a collection of histogram. It collects enough information for plan to calculate the selectivity.
type HistColl struct {
PhysicalID int64
Columns map[int64]*Column
Indices map[int64]*Index
// Idx2ColumnIDs maps the index id to its column ids. It's used to calculate the selectivity in planner.
Idx2ColumnIDs map[int64][]int64
// ColID2IdxID maps the column id to index id whose first column is it. It's used to calculate the selectivity in planner.
ColID2IdxID map[int64]int64
Count int64
ModifyCount int64 // Total modify count in a table.
// HavePhysicalID is true means this HistColl is from single table and have its ID's information.
// The physical id is used when try to load column stats from storage.
HavePhysicalID bool
Pseudo bool
}
// TableMemoryUsage records tbl memory usage
type TableMemoryUsage struct {
TableID int64
TotalMemUsage int64
ColumnsMemUsage map[int64]CacheItemMemoryUsage
IndicesMemUsage map[int64]CacheItemMemoryUsage
}
// TotalIdxTrackingMemUsage returns total indices' tracking memory usage
func (t *TableMemoryUsage) TotalIdxTrackingMemUsage() (sum int64) {
for _, idx := range t.IndicesMemUsage {
sum += idx.TrackingMemUsage()
}
return sum
}
// TotalColTrackingMemUsage returns total columns' tracking memory usage
func (t *TableMemoryUsage) TotalColTrackingMemUsage() (sum int64) {
for _, col := range t.ColumnsMemUsage {
sum += col.TrackingMemUsage()
}
return sum
}
// TotalTrackingMemUsage return total tracking memory usage
func (t *TableMemoryUsage) TotalTrackingMemUsage() int64 {
return t.TotalIdxTrackingMemUsage() + t.TotalColTrackingMemUsage()
}
// TableCacheItem indicates the unit item stored in statsCache, eg: Column/Index
type TableCacheItem interface {
ItemID() int64
MemoryUsage() CacheItemMemoryUsage
IsAllEvicted() bool
dropCMS()
dropTopN()
dropHist()
isStatsInitialized() bool
getEvictedStatus() int
statsVer() int64
isCMSExist() bool
}
// DropEvicted drop stats for table column/index
func DropEvicted(item TableCacheItem) {
if !item.isStatsInitialized() {
return
}
switch item.getEvictedStatus() {
case allLoaded:
if item.isCMSExist() && item.statsVer() < Version2 {
item.dropCMS()
return
}
// For stats version2, there is no cms thus we directly drop topn
item.dropTopN()
return
case onlyCmsEvicted:
item.dropTopN()
return
case onlyHistRemained:
item.dropHist()
return
default:
return
}
}
// CacheItemMemoryUsage indicates the memory usage of TableCacheItem
type CacheItemMemoryUsage interface {
ItemID() int64
TotalMemoryUsage() int64
TrackingMemUsage() int64
HistMemUsage() int64
TopnMemUsage() int64
CMSMemUsage() int64
}
// ColumnMemUsage records column memory usage
type ColumnMemUsage struct {
ColumnID int64
HistogramMemUsage int64
CMSketchMemUsage int64
FMSketchMemUsage int64
TopNMemUsage int64
TotalMemUsage int64
}
// TotalMemoryUsage implements CacheItemMemoryUsage
func (c *ColumnMemUsage) TotalMemoryUsage() int64 {
return c.TotalMemUsage
}
// ItemID implements CacheItemMemoryUsage
func (c *ColumnMemUsage) ItemID() int64 {
return c.ColumnID
}
// TrackingMemUsage implements CacheItemMemoryUsage
func (c *ColumnMemUsage) TrackingMemUsage() int64 {
return c.CMSketchMemUsage + c.TopNMemUsage + c.HistogramMemUsage
}
// HistMemUsage implements CacheItemMemoryUsage
func (c *ColumnMemUsage) HistMemUsage() int64 {
return c.HistogramMemUsage
}
// TopnMemUsage implements CacheItemMemoryUsage
func (c *ColumnMemUsage) TopnMemUsage() int64 {
return c.TopNMemUsage
}
// CMSMemUsage implements CacheItemMemoryUsage
func (c *ColumnMemUsage) CMSMemUsage() int64 {
return c.CMSketchMemUsage
}
// IndexMemUsage records index memory usage
type IndexMemUsage struct {
IndexID int64
HistogramMemUsage int64
CMSketchMemUsage int64
TopNMemUsage int64
TotalMemUsage int64
}
// TotalMemoryUsage implements CacheItemMemoryUsage
func (c *IndexMemUsage) TotalMemoryUsage() int64 {
return c.TotalMemUsage
}
// ItemID implements CacheItemMemoryUsage
func (c *IndexMemUsage) ItemID() int64 {
return c.IndexID
}
// TrackingMemUsage implements CacheItemMemoryUsage
func (c *IndexMemUsage) TrackingMemUsage() int64 {
return c.CMSketchMemUsage + c.TopNMemUsage + c.HistogramMemUsage
}
// HistMemUsage implements CacheItemMemoryUsage
func (c *IndexMemUsage) HistMemUsage() int64 {
return c.HistogramMemUsage
}
// TopnMemUsage implements CacheItemMemoryUsage
func (c *IndexMemUsage) TopnMemUsage() int64 {
return c.TopNMemUsage
}
// CMSMemUsage implements CacheItemMemoryUsage
func (c *IndexMemUsage) CMSMemUsage() int64 {
return c.CMSketchMemUsage
}
// MemoryUsage returns the total memory usage of this Table.
// it will only calc the size of Columns and Indices stats data of table.
// We ignore the size of other metadata in Table
func (t *Table) MemoryUsage() *TableMemoryUsage {
tMemUsage := &TableMemoryUsage{
TableID: t.PhysicalID,
ColumnsMemUsage: make(map[int64]CacheItemMemoryUsage),
IndicesMemUsage: make(map[int64]CacheItemMemoryUsage),
}
for _, col := range t.Columns {
if col != nil {
colMemUsage := col.MemoryUsage()
tMemUsage.ColumnsMemUsage[colMemUsage.ItemID()] = colMemUsage
tMemUsage.TotalMemUsage += colMemUsage.TotalMemoryUsage()
}
}
for _, index := range t.Indices {
if index != nil {
idxMemUsage := index.MemoryUsage()
tMemUsage.IndicesMemUsage[idxMemUsage.ItemID()] = idxMemUsage
tMemUsage.TotalMemUsage += idxMemUsage.TotalMemoryUsage()
}
}
return tMemUsage
}
// Copy copies the current table.
func (t *Table) Copy() *Table {
newHistColl := HistColl{
PhysicalID: t.PhysicalID,
HavePhysicalID: t.HavePhysicalID,
Count: t.Count,
Columns: make(map[int64]*Column, len(t.Columns)),
Indices: make(map[int64]*Index, len(t.Indices)),
Pseudo: t.Pseudo,
ModifyCount: t.ModifyCount,
}
for id, col := range t.Columns {
newHistColl.Columns[id] = col
}
for id, idx := range t.Indices {
newHistColl.Indices[id] = idx
}
nt := &Table{
HistColl: newHistColl,
Version: t.Version,
Name: t.Name,
TblInfoUpdateTS: t.TblInfoUpdateTS,
}
if t.ExtendedStats != nil {
newExtStatsColl := &ExtendedStatsColl{
Stats: make(map[string]*ExtendedStatsItem),
LastUpdateVersion: t.ExtendedStats.LastUpdateVersion,
}
for name, item := range t.ExtendedStats.Stats {
newExtStatsColl.Stats[name] = item
}
nt.ExtendedStats = newExtStatsColl
}
return nt
}
// String implements Stringer interface.
func (t *Table) String() string {
strs := make([]string, 0, len(t.Columns)+1)
strs = append(strs, fmt.Sprintf("Table:%d Count:%d", t.PhysicalID, t.Count))
cols := make([]*Column, 0, len(t.Columns))
for _, col := range t.Columns {
cols = append(cols, col)
}
slices.SortFunc(cols, func(i, j *Column) bool { return i.ID < j.ID })
for _, col := range cols {
strs = append(strs, col.String())
}
idxs := make([]*Index, 0, len(t.Indices))
for _, idx := range t.Indices {
idxs = append(idxs, idx)
}
slices.SortFunc(idxs, func(i, j *Index) bool { return i.ID < j.ID })
for _, idx := range idxs {
strs = append(strs, idx.String())
}
// TODO: concat content of ExtendedStatsColl
return strings.Join(strs, "\n")
}
// IndexStartWithColumn finds the first index whose first column is the given column.
func (t *Table) IndexStartWithColumn(colName string) *Index {
for _, index := range t.Indices {
if index.Info.Columns[0].Name.L == colName {
return index
}
}
return nil
}
// ColumnByName finds the statistics.Column for the given column.
func (t *Table) ColumnByName(colName string) *Column {
for _, c := range t.Columns {
if c.Info.Name.L == colName {
return c
}
}
return nil
}
// GetStatsInfo returns their statistics according to the ID of the column or index, including histogram, CMSketch, TopN and FMSketch.
func (t *Table) GetStatsInfo(ID int64, isIndex bool) (int64, *Histogram, *CMSketch, *TopN, *FMSketch) {
if isIndex {
if idxStatsInfo, ok := t.Indices[ID]; ok {
return int64(idxStatsInfo.TotalRowCount()), idxStatsInfo.Histogram.Copy(), idxStatsInfo.CMSketch.Copy(), idxStatsInfo.TopN.Copy(), idxStatsInfo.FMSketch.Copy()
}
// newly added index which is not analyzed yet
return 0, nil, nil, nil, nil
}
if colStatsInfo, ok := t.Columns[ID]; ok {
return int64(colStatsInfo.TotalRowCount()), colStatsInfo.Histogram.Copy(), colStatsInfo.CMSketch.Copy(), colStatsInfo.TopN.Copy(), colStatsInfo.FMSketch.Copy()
}
// newly added column which is not analyzed yet
return 0, nil, nil, nil, nil
}
// GetColRowCount tries to get the row count of the a column if possible.
// This method is useful because this row count doesn't consider the modify count.
func (t *Table) GetColRowCount() float64 {
IDs := make([]int64, 0, len(t.Columns))
for id := range t.Columns {
IDs = append(IDs, id)
}
slices.Sort(IDs)
for _, id := range IDs {
col := t.Columns[id]
// need to make sure stats on this column is loaded.
// TODO: use the new method to check if it's loaded
if col != nil && !(col.Histogram.NDV > 0 && col.notNullCount() == 0) && col.TotalRowCount() != 0 {
return col.TotalRowCount()
}
}
return -1
}
// GetStatsHealthy calculates stats healthy if the table stats is not pseudo.
// If the table stats is pseudo, it returns 0, false, otherwise it returns stats healthy, true.
func (t *Table) GetStatsHealthy() (int64, bool) {
if t == nil || t.Pseudo {
return 0, false
}
var healthy int64
if t.ModifyCount < t.Count {
healthy = int64((1.0 - float64(t.ModifyCount)/float64(t.Count)) * 100.0)
} else if t.ModifyCount == 0 {
healthy = 100
}
return healthy, true
}
type neededStatsMap struct {
m sync.RWMutex
items map[model.TableItemID]struct{}
}
func (n *neededStatsMap) AllItems() []model.TableItemID {
n.m.RLock()
keys := make([]model.TableItemID, 0, len(n.items))
for key := range n.items {
keys = append(keys, key)
}
n.m.RUnlock()
return keys
}
func (n *neededStatsMap) insert(col model.TableItemID) {
n.m.Lock()
n.items[col] = struct{}{}
n.m.Unlock()
}
func (n *neededStatsMap) Delete(col model.TableItemID) {
n.m.Lock()
delete(n.items, col)
n.m.Unlock()
}
func (n *neededStatsMap) Length() int {
n.m.RLock()
defer n.m.RUnlock()
return len(n.items)
}
// RatioOfPseudoEstimate means if modifyCount / statsTblCount is greater than this ratio, we think the stats is invalid
// and use pseudo estimation.
var RatioOfPseudoEstimate = atomic.NewFloat64(0.7)
// IsInitialized returns true if any column/index stats of the table is initialized.
func (t *Table) IsInitialized() bool {
for _, col := range t.Columns {
if col != nil && col.IsStatsInitialized() {
return true
}
}
for _, idx := range t.Indices {
if idx != nil && idx.IsStatsInitialized() {
return true
}
}
return false
}
// IsOutdated returns true if the table stats is outdated.
func (t *Table) IsOutdated() bool {
rowcount := t.GetColRowCount()
if rowcount < 0 {
rowcount = float64(t.Count)
}
if rowcount > 0 && float64(t.ModifyCount)/rowcount > RatioOfPseudoEstimate.Load() {
return true
}
return false
}
// ColumnGreaterRowCount estimates the row count where the column greater than value.
func (t *Table) ColumnGreaterRowCount(sctx sessionctx.Context, value types.Datum, colID int64) float64 {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sctx, t.Pseudo) {
return float64(t.Count) / pseudoLessRate
}
return c.greaterRowCount(value) * c.GetIncreaseFactor(t.Count)
}
// ColumnLessRowCount estimates the row count where the column less than value. Note that null values are not counted.
func (t *Table) ColumnLessRowCount(sctx sessionctx.Context, value types.Datum, colID int64) float64 {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sctx, t.Pseudo) {
return float64(t.Count) / pseudoLessRate
}
return c.lessRowCount(value) * c.GetIncreaseFactor(t.Count)
}
// ColumnBetweenRowCount estimates the row count where column greater or equal to a and less than b.
func (t *Table) ColumnBetweenRowCount(sctx sessionctx.Context, a, b types.Datum, colID int64) (float64, error) {
sc := sctx.GetSessionVars().StmtCtx
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sctx, t.Pseudo) {
return float64(t.Count) / pseudoBetweenRate, nil
}
aEncoded, err := codec.EncodeKey(sc, nil, a)
if err != nil {
return 0, err
}
bEncoded, err := codec.EncodeKey(sc, nil, b)
if err != nil {
return 0, err
}
count := c.BetweenRowCount(sctx, a, b, aEncoded, bEncoded)
if a.IsNull() {
count += float64(c.NullCount)
}
return count * c.GetIncreaseFactor(t.Count), nil
}
// ColumnEqualRowCount estimates the row count where the column equals to value.
func (t *Table) ColumnEqualRowCount(sctx sessionctx.Context, value types.Datum, colID int64) (float64, error) {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sctx, t.Pseudo) {
return float64(t.Count) / pseudoEqualRate, nil
}
encodedVal, err := codec.EncodeKey(sctx.GetSessionVars().StmtCtx, nil, value)
if err != nil {
return 0, err
}
result, err := c.equalRowCount(sctx, value, encodedVal, t.ModifyCount)
result *= c.GetIncreaseFactor(t.Count)
return result, errors.Trace(err)
}
// GetRowCountByIntColumnRanges estimates the row count by a slice of IntColumnRange.
func (coll *HistColl) GetRowCountByIntColumnRanges(sctx sessionctx.Context, colID int64, intRanges []*ranger.Range) (result float64, err error) {
sc := sctx.GetSessionVars().StmtCtx
c, ok := coll.Columns[colID]
if c != nil {
recordUsedItemStatsStatus(sctx, c.StatsLoadedStatus, coll.PhysicalID, colID, false)
}
if !ok || c.IsInvalid(sctx, coll.Pseudo) {
if len(intRanges) == 0 {
return 0, nil
}
if intRanges[0].LowVal[0].Kind() == types.KindInt64 {
result = getPseudoRowCountBySignedIntRanges(intRanges, float64(coll.Count))
} else {
result = getPseudoRowCountByUnsignedIntRanges(intRanges, float64(coll.Count))
}
if sc.EnableOptimizerCETrace && ok {
CETraceRange(sctx, coll.PhysicalID, []string{c.Info.Name.O}, intRanges, "Column Stats-Pseudo", uint64(result))
}
return result, nil
}
result, err = c.GetColumnRowCount(sctx, intRanges, coll.Count, true)
if sc.EnableOptimizerCETrace {
CETraceRange(sctx, coll.PhysicalID, []string{c.Info.Name.O}, intRanges, "Column Stats", uint64(result))
}
return result, errors.Trace(err)
}
// GetRowCountByColumnRanges estimates the row count by a slice of Range.
func (coll *HistColl) GetRowCountByColumnRanges(sctx sessionctx.Context, colID int64, colRanges []*ranger.Range) (float64, error) {
sc := sctx.GetSessionVars().StmtCtx
c, ok := coll.Columns[colID]
if c != nil {
recordUsedItemStatsStatus(sctx, c.StatsLoadedStatus, coll.PhysicalID, colID, false)
}
if !ok || c.IsInvalid(sctx, coll.Pseudo) {
result, err := GetPseudoRowCountByColumnRanges(sc, float64(coll.Count), colRanges, 0)
if err == nil && sc.EnableOptimizerCETrace && ok {
CETraceRange(sctx, coll.PhysicalID, []string{c.Info.Name.O}, colRanges, "Column Stats-Pseudo", uint64(result))
}
return result, err
}
result, err := c.GetColumnRowCount(sctx, colRanges, coll.Count, false)
if sc.EnableOptimizerCETrace {
CETraceRange(sctx, coll.PhysicalID, []string{c.Info.Name.O}, colRanges, "Column Stats", uint64(result))
}
return result, errors.Trace(err)
}
// GetRowCountByIndexRanges estimates the row count by a slice of Range.
func (coll *HistColl) GetRowCountByIndexRanges(sctx sessionctx.Context, idxID int64, indexRanges []*ranger.Range) (float64, error) {
sc := sctx.GetSessionVars().StmtCtx
idx, ok := coll.Indices[idxID]
colNames := make([]string, 0, 8)
if ok {
for _, col := range idx.Info.Columns {
colNames = append(colNames, col.Name.O)
}
}
if idx != nil {
recordUsedItemStatsStatus(sctx, idx.StatsLoadedStatus, coll.PhysicalID, idxID, true)
}
if !ok || idx.IsInvalid(coll.Pseudo) {
colsLen := -1
if idx != nil && idx.Info.Unique {
colsLen = len(idx.Info.Columns)
}
result, err := getPseudoRowCountByIndexRanges(sc, indexRanges, float64(coll.Count), colsLen)
if err == nil && sc.EnableOptimizerCETrace && ok {
CETraceRange(sctx, coll.PhysicalID, colNames, indexRanges, "Index Stats-Pseudo", uint64(result))
}
return result, err
}
var result float64
var err error
if idx.CMSketch != nil && idx.StatsVer == Version1 {
result, err = coll.getIndexRowCount(sctx, idxID, indexRanges)
} else {
result, err = idx.GetRowCount(sctx, coll, indexRanges, coll.Count)
}
if sc.EnableOptimizerCETrace {
CETraceRange(sctx, coll.PhysicalID, colNames, indexRanges, "Index Stats", uint64(result))
}
return result, errors.Trace(err)
}
// CETraceRange appends a list of ranges and related information into CE trace
func CETraceRange(sctx sessionctx.Context, tableID int64, colNames []string, ranges []*ranger.Range, tp string, rowCount uint64) {
sc := sctx.GetSessionVars().StmtCtx
allPoint := true
for _, ran := range ranges {
if !ran.IsPointNullable(sctx) {
allPoint = false
break
}
}
if allPoint {
tp = tp + "-Point"
} else {
tp = tp + "-Range"
}
expr, err := ranger.RangesToString(sc, ranges, colNames)
if err != nil {
logutil.BgLogger().Debug("[OptimizerTrace] Failed to trace CE of ranges", zap.Error(err))
}
// We don't need to record meaningless expressions.
if expr == "" || expr == "true" || expr == "false" {
return
}
CERecord := tracing.CETraceRecord{
TableID: tableID,
Type: tp,
Expr: expr,
RowCount: rowCount,
}
sc.OptimizerCETrace = append(sc.OptimizerCETrace, &CERecord)
}
func (coll *HistColl) findAvailableStatsForCol(sctx sessionctx.Context, uniqueID int64) (isIndex bool, idx int64) {
// try to find available stats in column stats
if colStats, ok := coll.Columns[uniqueID]; ok && colStats != nil && !colStats.IsInvalid(sctx, coll.Pseudo) {
return false, uniqueID
}
// try to find available stats in single column index stats (except for prefix index)
for idxStatsIdx, cols := range coll.Idx2ColumnIDs {
if len(cols) == 1 && cols[0] == uniqueID {
idxStats, ok := coll.Indices[idxStatsIdx]
if ok &&
idxStats.Info.Columns[0].Length == types.UnspecifiedLength &&
!idxStats.IsInvalid(coll.Pseudo) {
return true, idxStatsIdx
}
}
}
return false, -1
}
// GetSelectivityByFilter try to estimate selectivity of expressions by evaluate the expressions using TopN and NULL.
// The data represented by the Histogram would use the defaultSelectivity parameter as the selectivity.
// Currently, this method can only handle expressions involving a single column.
func (coll *HistColl) GetSelectivityByFilter(sctx sessionctx.Context,
defaultSelectivity float64,
filters []expression.Expression) (ok bool, selectivity float64, err error) {
// 1. Make sure the expressions
// (1) are safe to be evaluated here,
// (2) involve only one column,
// (3) and this column is not a "new collation" string column so that we're able to restore values from the stats.
for _, filter := range filters {
if expression.IsMutableEffectsExpr(filter) {
return false, 0, nil
}
}
if expression.ContainCorrelatedColumn(filters) {
return false, 0, nil
}
cols := expression.ExtractColumnsFromExpressions(nil, filters, nil)
if len(cols) != 1 {
return false, 0, nil
}
col := cols[0]
tp := col.RetType
if types.IsString(tp.GetType()) && collate.NewCollationEnabled() && !collate.IsBinCollation(tp.GetCollate()) {
return false, 0, nil
}
// 2. Get the available stats, make sure it's a ver2 stats and get the needed data structure from it.
isIndex, i := coll.findAvailableStatsForCol(sctx, col.UniqueID)
if i < 0 {
return false, 0, nil
}
var statsVer, nullCnt int64
var histTotalCnt, totalCnt float64
var topnTotalCnt uint64
var hist *Histogram
var topn *TopN
if isIndex {
stats := coll.Indices[i]
statsVer = stats.StatsVer
hist = &stats.Histogram
nullCnt = hist.NullCount
topn = stats.TopN
} else {
stats := coll.Columns[i]
statsVer = stats.StatsVer
hist = &stats.Histogram
nullCnt = hist.NullCount
topn = stats.TopN
}
// Only in stats ver2, we can assume that: TopN + Histogram + NULL == All data
if statsVer != Version2 {
return false, 0, nil
}
topnTotalCnt = topn.TotalCount()
histTotalCnt = hist.notNullCount()
totalCnt = float64(topnTotalCnt) + histTotalCnt + float64(nullCnt)
var topNSel, histSel, nullSel float64
// Prepare for evaluation.
// For execution, we use Column.Index instead of Column.UniqueID to locate a column.
// We have only one column here, so we set it to 0.
originalIndex := col.Index
col.Index = 0
defer func() {
// Restore the original Index to avoid unexpected situation.
col.Index = originalIndex
}()
size := 1
if topn != nil {
size = len(topn.TopN)
}
c := chunk.NewChunkWithCapacity([]*types.FieldType{tp}, size)
selected := make([]bool, 0, size)
// 3. Calculate the TopN part selectivity.
// This stage is considered as the core functionality of this method, errors in this stage would make this entire method fail.
var topNSelectedCnt uint64
if topn != nil {
for _, item := range topn.TopN {
_, val, err := codec.DecodeOne(item.Encoded)
if err != nil {
return false, 0, err
}
c.AppendDatum(0, &val)
}
selected, err = expression.VectorizedFilter(sctx, filters, chunk.NewIterator4Chunk(c), selected)
if err != nil {
return false, 0, err
}
for i, isTrue := range selected {
if isTrue {
topNSelectedCnt += topn.TopN[i].Count
}
}
}
topNSel = float64(topNSelectedCnt) / totalCnt
// 4. Calculate the Histogram part selectivity.
histSel = defaultSelectivity * histTotalCnt / totalCnt
// 5. Calculate the NULL part selectivity.
// Errors in this staged would be returned, but would not make this entire method fail.
c.Reset()
c.AppendNull(0)
selected = selected[:0]
selected, err = expression.VectorizedFilter(sctx, filters, chunk.NewIterator4Chunk(c), selected)
if err != nil || len(selected) != 1 {
nullSel = defaultSelectivity * float64(nullCnt) / totalCnt
} else if selected[0] {
nullSel = float64(nullCnt) / totalCnt
} else {
nullSel = 0
}
// 6. Get the final result.
res := topNSel + histSel + nullSel
return true, res, err
}
// PseudoAvgCountPerValue gets a pseudo average count if histogram not exists.
func (t *Table) PseudoAvgCountPerValue() float64 {
return float64(t.Count) / pseudoEqualRate
}
// GetOrdinalOfRangeCond gets the ordinal of the position range condition,
// if not exist, it returns the end position.
func GetOrdinalOfRangeCond(sc *stmtctx.StatementContext, ran *ranger.Range) int {
for i := range ran.LowVal {
a, b := ran.LowVal[i], ran.HighVal[i]
cmp, err := a.Compare(sc, &b, ran.Collators[0])
if err != nil {
return 0
}
if cmp != 0 {
return i
}
}
return len(ran.LowVal)
}
// ID2UniqueID generates a new HistColl whose `Columns` is built from UniqueID of given columns.
func (coll *HistColl) ID2UniqueID(columns []*expression.Column) *HistColl {
cols := make(map[int64]*Column)
for _, col := range columns {
colHist, ok := coll.Columns[col.ID]
if ok {
cols[col.UniqueID] = colHist
}
}
newColl := &HistColl{
PhysicalID: coll.PhysicalID,
HavePhysicalID: coll.HavePhysicalID,
Pseudo: coll.Pseudo,
Count: coll.Count,
ModifyCount: coll.ModifyCount,
Columns: cols,
}
return newColl
}
// GenerateHistCollFromColumnInfo generates a new HistColl whose ColID2IdxID and IdxID2ColIDs is built from the given parameter.
func (coll *HistColl) GenerateHistCollFromColumnInfo(infos []*model.ColumnInfo, columns []*expression.Column) *HistColl {
newColHistMap := make(map[int64]*Column)
colInfoID2UniqueID := make(map[int64]int64, len(columns))
colNames2UniqueID := make(map[string]int64)
for _, col := range columns {
colInfoID2UniqueID[col.ID] = col.UniqueID
}
for _, colInfo := range infos {
uniqueID, ok := colInfoID2UniqueID[colInfo.ID]
if ok {
colNames2UniqueID[colInfo.Name.L] = uniqueID
}
}
for id, colHist := range coll.Columns {
uniqueID, ok := colInfoID2UniqueID[id]
// Collect the statistics by the given columns.
if ok {
newColHistMap[uniqueID] = colHist
}
}
newIdxHistMap := make(map[int64]*Index)
idx2Columns := make(map[int64][]int64)
colID2IdxID := make(map[int64]int64)
for _, idxHist := range coll.Indices {
ids := make([]int64, 0, len(idxHist.Info.Columns))
for _, idxCol := range idxHist.Info.Columns {
uniqueID, ok := colNames2UniqueID[idxCol.Name.L]
if !ok {
break
}
ids = append(ids, uniqueID)
}
// If the length of the id list is 0, this index won't be used in this query.
if len(ids) == 0 {
continue
}
colID2IdxID[ids[0]] = idxHist.ID
newIdxHistMap[idxHist.ID] = idxHist
idx2Columns[idxHist.ID] = ids
}
newColl := &HistColl{
PhysicalID: coll.PhysicalID,
HavePhysicalID: coll.HavePhysicalID,
Pseudo: coll.Pseudo,
Count: coll.Count,
ModifyCount: coll.ModifyCount,
Columns: newColHistMap,
Indices: newIdxHistMap,
ColID2IdxID: colID2IdxID,
Idx2ColumnIDs: idx2Columns,
}
return newColl
}
// isSingleColIdxNullRange checks if a range is [NULL, NULL] on a single-column index.
func isSingleColIdxNullRange(idx *Index, ran *ranger.Range) bool {
if len(idx.Info.Columns) > 1 {
return false
}
l, h := ran.LowVal[0], ran.HighVal[0]
if l.IsNull() && h.IsNull() {
return true
}
return false
}
// outOfRangeEQSelectivity estimates selectivities for out-of-range values.
// It assumes all modifications are insertions and all new-inserted rows are uniformly distributed
// and has the same distribution with analyzed rows, which means each unique value should have the
// same number of rows(Tot/NDV) of it.
func outOfRangeEQSelectivity(ndv, realtimeRowCount, columnRowCount int64) float64 {
increaseRowCount := realtimeRowCount - columnRowCount
if increaseRowCount <= 0 {
return 0 // it must be 0 since the histogram contains the whole data
}
if ndv < outOfRangeBetweenRate {
ndv = outOfRangeBetweenRate // avoid inaccurate selectivity caused by small NDV
}
selectivity := 1 / float64(ndv)
if selectivity*float64(columnRowCount) > float64(increaseRowCount) {
selectivity = float64(increaseRowCount) / float64(columnRowCount)
}
return selectivity
}
// crossValidationSelectivity gets the selectivity of multi-column equal conditions by cross validation.
func (coll *HistColl) crossValidationSelectivity(sctx sessionctx.Context, idx *Index, usedColsLen int, idxPointRange *ranger.Range) (float64, float64, error) {
minRowCount := math.MaxFloat64
cols := coll.Idx2ColumnIDs[idx.ID]
crossValidationSelectivity := 1.0
totalRowCount := idx.TotalRowCount()
for i, colID := range cols {
if i >= usedColsLen {
break
}
if col, ok := coll.Columns[colID]; ok {
if col.IsInvalid(sctx, coll.Pseudo) {
continue
}
// Since the column range is point range(LowVal is equal to HighVal), we need to set both LowExclude and HighExclude to false.
// Otherwise we would get 0.0 estRow from GetColumnRowCount.
rang := ranger.Range{
LowVal: []types.Datum{idxPointRange.LowVal[i]},
LowExclude: false,
HighVal: []types.Datum{idxPointRange.HighVal[i]},
HighExclude: false,
Collators: []collate.Collator{idxPointRange.Collators[i]},
}
rowCount, err := col.GetColumnRowCount(sctx, []*ranger.Range{&rang}, coll.Count, col.IsHandle)
if err != nil {
return 0, 0, err
}
crossValidationSelectivity = crossValidationSelectivity * (rowCount / totalRowCount)
if rowCount < minRowCount {
minRowCount = rowCount
}
}
}
return minRowCount, crossValidationSelectivity, nil
}
// getEqualCondSelectivity gets the selectivity of the equal conditions.
func (coll *HistColl) getEqualCondSelectivity(sctx sessionctx.Context, idx *Index, bytes []byte, usedColsLen int, idxPointRange *ranger.Range) (float64, error) {
coverAll := len(idx.Info.Columns) == usedColsLen
// In this case, the row count is at most 1.
if idx.Info.Unique && coverAll {
return 1.0 / idx.TotalRowCount(), nil
}
val := types.NewBytesDatum(bytes)
if idx.outOfRange(val) {
// When the value is out of range, we could not found this value in the CM Sketch,
// so we use heuristic methods to estimate the selectivity.
if idx.NDV > 0 && coverAll {
return outOfRangeEQSelectivity(idx.NDV, coll.Count, int64(idx.TotalRowCount())), nil
}
// The equal condition only uses prefix columns of the index.
colIDs := coll.Idx2ColumnIDs[idx.ID]
var ndv int64
for i, colID := range colIDs {
if i >= usedColsLen {
break
}
if col, ok := coll.Columns[colID]; ok {
ndv = mathutil.Max(ndv, col.Histogram.NDV)
}
}
return outOfRangeEQSelectivity(ndv, coll.Count, int64(idx.TotalRowCount())), nil
}
minRowCount, crossValidationSelectivity, err := coll.crossValidationSelectivity(sctx, idx, usedColsLen, idxPointRange)
if err != nil {
return 0, nil
}
idxCount := float64(idx.QueryBytes(bytes))
if minRowCount < idxCount {
return crossValidationSelectivity, nil
}
return idxCount / idx.TotalRowCount(), nil
}
func (coll *HistColl) getIndexRowCount(sctx sessionctx.Context, idxID int64, indexRanges []*ranger.Range) (float64, error) {
sc := sctx.GetSessionVars().StmtCtx
idx := coll.Indices[idxID]
totalCount := float64(0)
for _, ran := range indexRanges {
rangePosition := GetOrdinalOfRangeCond(sc, ran)
var rangeVals []types.Datum
// Try to enum the last range values.
if rangePosition != len(ran.LowVal) {
rangeVals = enumRangeValues(ran.LowVal[rangePosition], ran.HighVal[rangePosition], ran.LowExclude, ran.HighExclude)
if rangeVals != nil {
rangePosition++
}
}
// If first one is range, just use the previous way to estimate; if it is [NULL, NULL] range
// on single-column index, use previous way as well, because CMSketch does not contain null
// values in this case.
if rangePosition == 0 || isSingleColIdxNullRange(idx, ran) {
count, err := idx.GetRowCount(sctx, nil, []*ranger.Range{ran}, coll.Count)
if err != nil {
return 0, errors.Trace(err)
}
totalCount += count
continue
}
var selectivity float64
// use CM Sketch to estimate the equal conditions
if rangeVals == nil {
bytes, err := codec.EncodeKey(sc, nil, ran.LowVal[:rangePosition]...)
if err != nil {
return 0, errors.Trace(err)
}
selectivity, err = coll.getEqualCondSelectivity(sctx, idx, bytes, rangePosition, ran)
if err != nil {
return 0, errors.Trace(err)
}
} else {
bytes, err := codec.EncodeKey(sc, nil, ran.LowVal[:rangePosition-1]...)
if err != nil {
return 0, errors.Trace(err)
}
prefixLen := len(bytes)
for _, val := range rangeVals {
bytes = bytes[:prefixLen]
bytes, err = codec.EncodeKey(sc, bytes, val)
if err != nil {
return 0, err
}
res, err := coll.getEqualCondSelectivity(sctx, idx, bytes, rangePosition, ran)
if err != nil {
return 0, errors.Trace(err)
}
selectivity += res
}
}
// use histogram to estimate the range condition
if rangePosition != len(ran.LowVal) {
rang := ranger.Range{
LowVal: []types.Datum{ran.LowVal[rangePosition]},
LowExclude: ran.LowExclude,
HighVal: []types.Datum{ran.HighVal[rangePosition]},
HighExclude: ran.HighExclude,
Collators: []collate.Collator{ran.Collators[rangePosition]},
}
var count float64
var err error
colIDs := coll.Idx2ColumnIDs[idxID]
var colID int64
if rangePosition >= len(colIDs) {
colID = -1
} else {
colID = colIDs[rangePosition]
}
// prefer index stats over column stats
if idx, ok := coll.ColID2IdxID[colID]; ok {
count, err = coll.GetRowCountByIndexRanges(sctx, idx, []*ranger.Range{&rang})
} else {
count, err = coll.GetRowCountByColumnRanges(sctx, colID, []*ranger.Range{&rang})
}
if err != nil {
return 0, errors.Trace(err)
}
selectivity = selectivity * count / idx.TotalRowCount()
}
totalCount += selectivity * idx.TotalRowCount()
}
if totalCount > idx.TotalRowCount() {
totalCount = idx.TotalRowCount()
}
return totalCount, nil
}
const fakePhysicalID int64 = -1
// PseudoTable creates a pseudo table statistics.
func PseudoTable(tblInfo *model.TableInfo) *Table {
pseudoHistColl := HistColl{
Count: PseudoRowCount,
PhysicalID: tblInfo.ID,
HavePhysicalID: true,
Columns: make(map[int64]*Column, len(tblInfo.Columns)),
Indices: make(map[int64]*Index, len(tblInfo.Indices)),
Pseudo: true,
}
t := &Table{
HistColl: pseudoHistColl,
}
for _, col := range tblInfo.Columns {
// The column is public to use. Also we should check the column is not hidden since hidden means that it's used by expression index.
// We would not collect stats for the hidden column and we won't use the hidden column to estimate.
// Thus we don't create pseudo stats for it.
if col.State == model.StatePublic && !col.Hidden {
t.Columns[col.ID] = &Column{
PhysicalID: fakePhysicalID,
Info: col,
IsHandle: tblInfo.PKIsHandle && mysql.HasPriKeyFlag(col.GetFlag()),
Histogram: *NewHistogram(col.ID, 0, 0, 0, &col.FieldType, 0, 0),
}
}
}
for _, idx := range tblInfo.Indices {
if idx.State == model.StatePublic {
t.Indices[idx.ID] = &Index{
PhysicalID: fakePhysicalID,
Info: idx,
Histogram: *NewHistogram(idx.ID, 0, 0, 0, types.NewFieldType(mysql.TypeBlob), 0, 0)}
}
}
return t
}
func getPseudoRowCountByIndexRanges(sc *stmtctx.StatementContext, indexRanges []*ranger.Range,
tableRowCount float64, colsLen int) (float64, error) {
if tableRowCount == 0 {
return 0, nil
}
var totalCount float64
for _, indexRange := range indexRanges {
count := tableRowCount
i, err := indexRange.PrefixEqualLen(sc)
if err != nil {
return 0, errors.Trace(err)
}
if i == colsLen && !indexRange.LowExclude && !indexRange.HighExclude {
totalCount += 1.0
continue
}
if i >= len(indexRange.LowVal) {
i = len(indexRange.LowVal) - 1
}
rowCount, err := GetPseudoRowCountByColumnRanges(sc, tableRowCount, []*ranger.Range{indexRange}, i)
if err != nil {
return 0, errors.Trace(err)
}
count = count / tableRowCount * rowCount
// If the condition is a = 1, b = 1, c = 1, d = 1, we think every a=1, b=1, c=1 only filtrate 1/100 data,
// so as to avoid collapsing too fast.
for j := 0; j < i; j++ {
count = count / float64(100)
}
totalCount += count
}
if totalCount > tableRowCount {
totalCount = tableRowCount / 3.0
}
return totalCount, nil
}
// GetPseudoRowCountByColumnRanges calculate the row count by the ranges if there's no statistics information for this column.
func GetPseudoRowCountByColumnRanges(sc *stmtctx.StatementContext, tableRowCount float64, columnRanges []*ranger.Range, colIdx int) (float64, error) {
var rowCount float64
for _, ran := range columnRanges {
if ran.LowVal[colIdx].Kind() == types.KindNull && ran.HighVal[colIdx].Kind() == types.KindMaxValue {
rowCount += tableRowCount
} else if ran.LowVal[colIdx].Kind() == types.KindMinNotNull {
nullCount := tableRowCount / pseudoEqualRate
if ran.HighVal[colIdx].Kind() == types.KindMaxValue {
rowCount += tableRowCount - nullCount
} else {
lessCount := tableRowCount / pseudoLessRate
rowCount += lessCount - nullCount
}
} else if ran.HighVal[colIdx].Kind() == types.KindMaxValue {
rowCount += tableRowCount / pseudoLessRate
} else {
compare, err := ran.LowVal[colIdx].Compare(sc, &ran.HighVal[colIdx], ran.Collators[colIdx])
if err != nil {
return 0, errors.Trace(err)
}
if compare == 0 {
rowCount += tableRowCount / pseudoEqualRate
} else {
rowCount += tableRowCount / pseudoBetweenRate
}
}
}
if rowCount > tableRowCount {
rowCount = tableRowCount
}
return rowCount, nil
}
func getPseudoRowCountBySignedIntRanges(intRanges []*ranger.Range, tableRowCount float64) float64 {
var rowCount float64
for _, rg := range intRanges {
var cnt float64
low := rg.LowVal[0].GetInt64()
if rg.LowVal[0].Kind() == types.KindNull || rg.LowVal[0].Kind() == types.KindMinNotNull {
low = math.MinInt64
}
high := rg.HighVal[0].GetInt64()
if rg.HighVal[0].Kind() == types.KindMaxValue {
high = math.MaxInt64
}
if low == math.MinInt64 && high == math.MaxInt64 {
cnt = tableRowCount
} else if low == math.MinInt64 {
cnt = tableRowCount / pseudoLessRate
} else if high == math.MaxInt64 {
cnt = tableRowCount / pseudoLessRate
} else {
if low == high {
cnt = 1 // When primary key is handle, the equal row count is at most one.
} else {
cnt = tableRowCount / pseudoBetweenRate
}
}
if high-low > 0 && cnt > float64(high-low) {
cnt = float64(high - low)
}
rowCount += cnt
}
if rowCount > tableRowCount {
rowCount = tableRowCount
}
return rowCount
}
func getPseudoRowCountByUnsignedIntRanges(intRanges []*ranger.Range, tableRowCount float64) float64 {
var rowCount float64
for _, rg := range intRanges {
var cnt float64
low := rg.LowVal[0].GetUint64()
if rg.LowVal[0].Kind() == types.KindNull || rg.LowVal[0].Kind() == types.KindMinNotNull {
low = 0
}
high := rg.HighVal[0].GetUint64()
if rg.HighVal[0].Kind() == types.KindMaxValue {
high = math.MaxUint64
}
if low == 0 && high == math.MaxUint64 {
cnt = tableRowCount
} else if low == 0 {
cnt = tableRowCount / pseudoLessRate
} else if high == math.MaxUint64 {
cnt = tableRowCount / pseudoLessRate
} else {
if low == high {
cnt = 1 // When primary key is handle, the equal row count is at most one.
} else {
cnt = tableRowCount / pseudoBetweenRate
}
}
if high > low && cnt > float64(high-low) {
cnt = float64(high - low)
}
rowCount += cnt
}
if rowCount > tableRowCount {
rowCount = tableRowCount
}
return rowCount
}
// GetAvgRowSize computes average row size for given columns.
func (coll *HistColl) GetAvgRowSize(ctx sessionctx.Context, cols []*expression.Column, isEncodedKey bool, isForScan bool) (size float64) {
sessionVars := ctx.GetSessionVars()
if coll.Pseudo || len(coll.Columns) == 0 || coll.Count == 0 {
size = pseudoColSize * float64(len(cols))
} else {
for _, col := range cols {
colHist, ok := coll.Columns[col.UniqueID]
// Normally this would not happen, it is for compatibility with old version stats which
// does not include TotColSize.
if !ok || (!colHist.IsHandle && colHist.TotColSize == 0 && (colHist.NullCount != coll.Count)) {
size += pseudoColSize
continue
}
// We differentiate if the column is encoded as key or value, because the resulted size
// is different.
if sessionVars.EnableChunkRPC && !isForScan {
size += colHist.AvgColSizeChunkFormat(coll.Count)
} else {
size += colHist.AvgColSize(coll.Count, isEncodedKey)
}
}
}
if sessionVars.EnableChunkRPC && !isForScan {
// Add 1/8 byte for each column's nullBitMap byte.
return size + float64(len(cols))/8
}
// Add 1 byte for each column's flag byte. See `encode` for details.
return size + float64(len(cols))
}
// GetAvgRowSizeListInDisk computes average row size for given columns.
func (coll *HistColl) GetAvgRowSizeListInDisk(cols []*expression.Column) (size float64) {
if coll.Pseudo || len(coll.Columns) == 0 || coll.Count == 0 {
for _, col := range cols {
size += float64(chunk.EstimateTypeWidth(col.GetType()))
}
} else {
for _, col := range cols {
colHist, ok := coll.Columns[col.UniqueID]
// Normally this would not happen, it is for compatibility with old version stats which
// does not include TotColSize.
if !ok || (!colHist.IsHandle && colHist.TotColSize == 0 && (colHist.NullCount != coll.Count)) {
size += float64(chunk.EstimateTypeWidth(col.GetType()))
continue
}
size += colHist.AvgColSizeListInDisk(coll.Count)
}
}
// Add 8 byte for each column's size record. See `ListInDisk` for details.
return size + float64(8*len(cols))
}
// GetTableAvgRowSize computes average row size for a table scan, exclude the index key-value pairs.
func (coll *HistColl) GetTableAvgRowSize(ctx sessionctx.Context, cols []*expression.Column, storeType kv.StoreType, handleInCols bool) (size float64) {
size = coll.GetAvgRowSize(ctx, cols, false, true)
switch storeType {
case kv.TiKV:
size += tablecodec.RecordRowKeyLen
// The `cols` for TiKV always contain the row_id, so prefix row size subtract its length.
size -= 8
case kv.TiFlash:
if !handleInCols {
size += 8 /* row_id length */
}
}
return
}
// GetIndexAvgRowSize computes average row size for a index scan.
func (coll *HistColl) GetIndexAvgRowSize(ctx sessionctx.Context, cols []*expression.Column, isUnique bool) (size float64) {
size = coll.GetAvgRowSize(ctx, cols, true, true)
// tablePrefix(1) + tableID(8) + indexPrefix(2) + indexID(8)
// Because the cols for index scan always contain the handle, so we don't add the rowID here.
size += 19
if !isUnique {
// add the len("_")
size++
}
return
}
// CheckAnalyzeVerOnTable checks whether the given version is the one from the tbl.
// If not, it will return false and set the version to the tbl's.
// We use this check to make sure all the statistics of the table are in the same version.
func CheckAnalyzeVerOnTable(tbl *Table, version *int) bool {
for _, col := range tbl.Columns {
// Version0 means no statistics is collected currently.
if col.StatsVer == Version0 {
continue
}
if col.StatsVer != int64(*version) {
*version = int(col.StatsVer)
return false
}
// If we found one column and the version is the same, we can directly return since all the versions from this table is the same.
return true
}
for _, idx := range tbl.Indices {
// Version0 means no statistics is collected currently.
if idx.StatsVer == Version0 {
continue
}
if idx.StatsVer != int64(*version) {
*version = int(idx.StatsVer)
return false
}
// If we found one column and the version is the same, we can directly return since all the versions from this table is the same.
return true
}
// This table has no statistics yet. We can directly return true.
return true
}
// recordUsedItemStatsStatus only records un-FullLoad item load status during user query
func recordUsedItemStatsStatus(sctx sessionctx.Context, loadStatus StatsLoadedStatus,
tableID, id int64, isIndex bool) {
if loadStatus.IsFullLoad() {
return
}
stmtCtx := sctx.GetSessionVars().StmtCtx
item := model.TableItemID{TableID: tableID, ID: id, IsIndex: isIndex}
// For some testcases, it skips ResetContextOfStmt to init StatsLoadStatus
if stmtCtx.StatsLoadStatus == nil {
stmtCtx.StatsLoadStatus = make(map[model.TableItemID]string)
}
stmtCtx.StatsLoadStatus[item] = loadStatus.StatusToString()
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦