tidb builder 源码
tidb builder 代码
文件路径:/executor/builder.go
// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package executor
import (
"bytes"
"context"
"math"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/kvproto/pkg/diagnosticspb"
"github.com/pingcap/kvproto/pkg/metapb"
"github.com/pingcap/tidb/config"
"github.com/pingcap/tidb/ddl"
"github.com/pingcap/tidb/ddl/placement"
"github.com/pingcap/tidb/distsql"
"github.com/pingcap/tidb/domain"
"github.com/pingcap/tidb/executor/aggfuncs"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/expression/aggregation"
"github.com/pingcap/tidb/infoschema"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/parser/ast"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
plannercore "github.com/pingcap/tidb/planner/core"
plannerutil "github.com/pingcap/tidb/planner/util"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/sessionctx/variable"
"github.com/pingcap/tidb/sessiontxn"
"github.com/pingcap/tidb/sessiontxn/staleread"
"github.com/pingcap/tidb/statistics"
"github.com/pingcap/tidb/store/helper"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/table/tables"
"github.com/pingcap/tidb/table/temptable"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/collate"
"github.com/pingcap/tidb/util/cteutil"
"github.com/pingcap/tidb/util/execdetails"
"github.com/pingcap/tidb/util/mathutil"
"github.com/pingcap/tidb/util/memory"
"github.com/pingcap/tidb/util/ranger"
"github.com/pingcap/tidb/util/rowcodec"
"github.com/pingcap/tidb/util/sqlexec"
"github.com/pingcap/tidb/util/timeutil"
"github.com/pingcap/tipb/go-tipb"
clientkv "github.com/tikv/client-go/v2/kv"
"github.com/tikv/client-go/v2/tikv"
"github.com/tikv/client-go/v2/txnkv"
"github.com/tikv/client-go/v2/txnkv/txnsnapshot"
"golang.org/x/exp/slices"
)
var (
executorCounterMergeJoinExec = metrics.ExecutorCounter.WithLabelValues("MergeJoinExec")
executorCountHashJoinExec = metrics.ExecutorCounter.WithLabelValues("HashJoinExec")
executorCounterHashAggExec = metrics.ExecutorCounter.WithLabelValues("HashAggExec")
executorStreamAggExec = metrics.ExecutorCounter.WithLabelValues("StreamAggExec")
executorCounterSortExec = metrics.ExecutorCounter.WithLabelValues("SortExec")
executorCounterTopNExec = metrics.ExecutorCounter.WithLabelValues("TopNExec")
executorCounterNestedLoopApplyExec = metrics.ExecutorCounter.WithLabelValues("NestedLoopApplyExec")
executorCounterIndexLookUpJoin = metrics.ExecutorCounter.WithLabelValues("IndexLookUpJoin")
executorCounterIndexLookUpExecutor = metrics.ExecutorCounter.WithLabelValues("IndexLookUpExecutor")
executorCounterIndexMergeReaderExecutor = metrics.ExecutorCounter.WithLabelValues("IndexMergeReaderExecutor")
)
// executorBuilder builds an Executor from a Plan.
// The InfoSchema must not change during execution.
type executorBuilder struct {
ctx sessionctx.Context
is infoschema.InfoSchema
err error // err is set when there is error happened during Executor building process.
hasLock bool
Ti *TelemetryInfo
// isStaleness means whether this statement use stale read.
isStaleness bool
txnScope string
readReplicaScope string
inUpdateStmt bool
inDeleteStmt bool
inInsertStmt bool
inSelectLockStmt bool
// forDataReaderBuilder indicates whether the builder is used by a dataReaderBuilder.
// When forDataReader is true, the builder should use the dataReaderTS as the executor read ts. This is because
// dataReaderBuilder can be used in concurrent goroutines, so we must ensure that getting the ts should be thread safe and
// can return a correct value even if the session context has already been destroyed
forDataReaderBuilder bool
dataReaderTS uint64
}
// CTEStorages stores resTbl and iterInTbl for CTEExec.
// There will be a map[CTEStorageID]*CTEStorages in StmtCtx,
// which will store all CTEStorages to make all shared CTEs use same the CTEStorages.
type CTEStorages struct {
ResTbl cteutil.Storage
IterInTbl cteutil.Storage
}
func newExecutorBuilder(ctx sessionctx.Context, is infoschema.InfoSchema, ti *TelemetryInfo) *executorBuilder {
txnManager := sessiontxn.GetTxnManager(ctx)
return &executorBuilder{
ctx: ctx,
is: is,
Ti: ti,
isStaleness: staleread.IsStmtStaleness(ctx),
txnScope: txnManager.GetTxnScope(),
readReplicaScope: txnManager.GetReadReplicaScope(),
}
}
// MockPhysicalPlan is used to return a specified executor in when build.
// It is mainly used for testing.
type MockPhysicalPlan interface {
plannercore.PhysicalPlan
GetExecutor() Executor
}
// MockExecutorBuilder is a wrapper for executorBuilder.
// ONLY used in test.
type MockExecutorBuilder struct {
*executorBuilder
}
// NewMockExecutorBuilderForTest is ONLY used in test.
func NewMockExecutorBuilderForTest(ctx sessionctx.Context, is infoschema.InfoSchema, ti *TelemetryInfo) *MockExecutorBuilder {
return &MockExecutorBuilder{
executorBuilder: newExecutorBuilder(ctx, is, ti)}
}
// Build builds an executor tree according to `p`.
func (b *MockExecutorBuilder) Build(p plannercore.Plan) Executor {
return b.build(p)
}
func (b *executorBuilder) build(p plannercore.Plan) Executor {
switch v := p.(type) {
case nil:
return nil
case *plannercore.Change:
return b.buildChange(v)
case *plannercore.CheckTable:
return b.buildCheckTable(v)
case *plannercore.RecoverIndex:
return b.buildRecoverIndex(v)
case *plannercore.CleanupIndex:
return b.buildCleanupIndex(v)
case *plannercore.CheckIndexRange:
return b.buildCheckIndexRange(v)
case *plannercore.ChecksumTable:
return b.buildChecksumTable(v)
case *plannercore.ReloadExprPushdownBlacklist:
return b.buildReloadExprPushdownBlacklist(v)
case *plannercore.ReloadOptRuleBlacklist:
return b.buildReloadOptRuleBlacklist(v)
case *plannercore.AdminPlugins:
return b.buildAdminPlugins(v)
case *plannercore.DDL:
return b.buildDDL(v)
case *plannercore.Deallocate:
return b.buildDeallocate(v)
case *plannercore.Delete:
return b.buildDelete(v)
case *plannercore.Execute:
return b.buildExecute(v)
case *plannercore.Trace:
return b.buildTrace(v)
case *plannercore.Explain:
return b.buildExplain(v)
case *plannercore.PointGetPlan:
return b.buildPointGet(v)
case *plannercore.BatchPointGetPlan:
return b.buildBatchPointGet(v)
case *plannercore.Insert:
return b.buildInsert(v)
case *plannercore.LoadData:
return b.buildLoadData(v)
case *plannercore.LoadStats:
return b.buildLoadStats(v)
case *plannercore.IndexAdvise:
return b.buildIndexAdvise(v)
case *plannercore.PlanReplayer:
return b.buildPlanReplayer(v)
case *plannercore.PhysicalLimit:
return b.buildLimit(v)
case *plannercore.Prepare:
return b.buildPrepare(v)
case *plannercore.PhysicalLock:
return b.buildSelectLock(v)
case *plannercore.CancelDDLJobs:
return b.buildCancelDDLJobs(v)
case *plannercore.ShowNextRowID:
return b.buildShowNextRowID(v)
case *plannercore.ShowDDL:
return b.buildShowDDL(v)
case *plannercore.PhysicalShowDDLJobs:
return b.buildShowDDLJobs(v)
case *plannercore.ShowDDLJobQueries:
return b.buildShowDDLJobQueries(v)
case *plannercore.ShowDDLJobQueriesWithRange:
return b.buildShowDDLJobQueriesWithRange(v)
case *plannercore.ShowSlow:
return b.buildShowSlow(v)
case *plannercore.PhysicalShow:
return b.buildShow(v)
case *plannercore.Simple:
return b.buildSimple(v)
case *plannercore.PhysicalSimpleWrapper:
return b.buildSimple(&v.Inner)
case *plannercore.Set:
return b.buildSet(v)
case *plannercore.SetConfig:
return b.buildSetConfig(v)
case *plannercore.PhysicalSort:
return b.buildSort(v)
case *plannercore.PhysicalTopN:
return b.buildTopN(v)
case *plannercore.PhysicalUnionAll:
return b.buildUnionAll(v)
case *plannercore.Update:
return b.buildUpdate(v)
case *plannercore.PhysicalUnionScan:
return b.buildUnionScanExec(v)
case *plannercore.PhysicalHashJoin:
return b.buildHashJoin(v)
case *plannercore.PhysicalMergeJoin:
return b.buildMergeJoin(v)
case *plannercore.PhysicalIndexJoin:
return b.buildIndexLookUpJoin(v)
case *plannercore.PhysicalIndexMergeJoin:
return b.buildIndexLookUpMergeJoin(v)
case *plannercore.PhysicalIndexHashJoin:
return b.buildIndexNestedLoopHashJoin(v)
case *plannercore.PhysicalSelection:
return b.buildSelection(v)
case *plannercore.PhysicalHashAgg:
return b.buildHashAgg(v)
case *plannercore.PhysicalStreamAgg:
return b.buildStreamAgg(v)
case *plannercore.PhysicalProjection:
return b.buildProjection(v)
case *plannercore.PhysicalMemTable:
return b.buildMemTable(v)
case *plannercore.PhysicalTableDual:
return b.buildTableDual(v)
case *plannercore.PhysicalApply:
return b.buildApply(v)
case *plannercore.PhysicalMaxOneRow:
return b.buildMaxOneRow(v)
case *plannercore.Analyze:
return b.buildAnalyze(v)
case *plannercore.PhysicalTableReader:
return b.buildTableReader(v)
case *plannercore.PhysicalTableSample:
return b.buildTableSample(v)
case *plannercore.PhysicalIndexReader:
return b.buildIndexReader(v)
case *plannercore.PhysicalIndexLookUpReader:
return b.buildIndexLookUpReader(v)
case *plannercore.PhysicalWindow:
return b.buildWindow(v)
case *plannercore.PhysicalShuffle:
return b.buildShuffle(v)
case *plannercore.PhysicalShuffleReceiverStub:
return b.buildShuffleReceiverStub(v)
case *plannercore.SQLBindPlan:
return b.buildSQLBindExec(v)
case *plannercore.SplitRegion:
return b.buildSplitRegion(v)
case *plannercore.PhysicalIndexMergeReader:
return b.buildIndexMergeReader(v)
case *plannercore.SelectInto:
return b.buildSelectInto(v)
case *plannercore.AdminShowTelemetry:
return b.buildAdminShowTelemetry(v)
case *plannercore.AdminResetTelemetryID:
return b.buildAdminResetTelemetryID(v)
case *plannercore.PhysicalCTE:
return b.buildCTE(v)
case *plannercore.PhysicalCTETable:
return b.buildCTETableReader(v)
case *plannercore.CompactTable:
return b.buildCompactTable(v)
default:
if mp, ok := p.(MockPhysicalPlan); ok {
return mp.GetExecutor()
}
b.err = ErrUnknownPlan.GenWithStack("Unknown Plan %T", p)
return nil
}
}
func (b *executorBuilder) buildCancelDDLJobs(v *plannercore.CancelDDLJobs) Executor {
e := &CancelDDLJobsExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
}
return e
}
func (b *executorBuilder) buildChange(v *plannercore.Change) Executor {
return &ChangeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
ChangeStmt: v.ChangeStmt,
}
}
func (b *executorBuilder) buildShowNextRowID(v *plannercore.ShowNextRowID) Executor {
e := &ShowNextRowIDExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tblName: v.TableName,
}
return e
}
func (b *executorBuilder) buildShowDDL(v *plannercore.ShowDDL) Executor {
// We get Info here because for Executors that returns result set,
// next will be called after transaction has been committed.
// We need the transaction to get Info.
e := &ShowDDLExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
}
var err error
ownerManager := domain.GetDomain(e.ctx).DDL().OwnerManager()
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
e.ddlOwnerID, err = ownerManager.GetOwnerID(ctx)
cancel()
if err != nil {
b.err = err
return nil
}
session, err := e.getSysSession()
if err != nil {
b.err = err
return nil
}
ddlInfo, err := ddl.GetDDLInfoWithNewTxn(session)
e.releaseSysSession(kv.WithInternalSourceType(context.Background(), kv.InternalTxnDDL), session)
if err != nil {
b.err = err
return nil
}
e.ddlInfo = ddlInfo
e.selfID = ownerManager.ID()
return e
}
func (b *executorBuilder) buildShowDDLJobs(v *plannercore.PhysicalShowDDLJobs) Executor {
loc := b.ctx.GetSessionVars().Location()
ddlJobRetriever := DDLJobRetriever{TZLoc: loc}
e := &ShowDDLJobsExec{
jobNumber: int(v.JobNumber),
is: b.is,
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
DDLJobRetriever: ddlJobRetriever,
}
return e
}
func (b *executorBuilder) buildShowDDLJobQueries(v *plannercore.ShowDDLJobQueries) Executor {
e := &ShowDDLJobQueriesExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
}
return e
}
func (b *executorBuilder) buildShowDDLJobQueriesWithRange(v *plannercore.ShowDDLJobQueriesWithRange) Executor {
e := &ShowDDLJobQueriesWithRangeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
offset: v.Offset,
limit: v.Limit,
}
return e
}
func (b *executorBuilder) buildShowSlow(v *plannercore.ShowSlow) Executor {
e := &ShowSlowExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
ShowSlow: v.ShowSlow,
}
return e
}
// buildIndexLookUpChecker builds check information to IndexLookUpReader.
func buildIndexLookUpChecker(b *executorBuilder, p *plannercore.PhysicalIndexLookUpReader,
e *IndexLookUpExecutor) {
is := p.IndexPlans[0].(*plannercore.PhysicalIndexScan)
fullColLen := len(is.Index.Columns) + len(p.CommonHandleCols)
if !e.isCommonHandle() {
fullColLen += 1
}
e.dagPB.OutputOffsets = make([]uint32, fullColLen)
for i := 0; i < fullColLen; i++ {
e.dagPB.OutputOffsets[i] = uint32(i)
}
ts := p.TablePlans[0].(*plannercore.PhysicalTableScan)
e.handleIdx = ts.HandleIdx
e.ranges = ranger.FullRange()
tps := make([]*types.FieldType, 0, fullColLen)
for _, col := range is.Columns {
tps = append(tps, &(col.FieldType))
}
if !e.isCommonHandle() {
tps = append(tps, types.NewFieldType(mysql.TypeLonglong))
}
e.checkIndexValue = &checkIndexValue{idxColTps: tps}
colNames := make([]string, 0, len(is.IdxCols))
for i := range is.IdxCols {
colNames = append(colNames, is.Columns[i].Name.L)
}
if cols, missingColOffset := table.FindColumns(e.table.Cols(), colNames, true); missingColOffset >= 0 {
b.err = plannercore.ErrUnknownColumn.GenWithStack("Unknown column %s", is.Columns[missingColOffset].Name.O)
} else {
e.idxTblCols = cols
}
}
func (b *executorBuilder) buildCheckTable(v *plannercore.CheckTable) Executor {
readerExecs := make([]*IndexLookUpExecutor, 0, len(v.IndexLookUpReaders))
for _, readerPlan := range v.IndexLookUpReaders {
readerExec, err := buildNoRangeIndexLookUpReader(b, readerPlan)
if err != nil {
b.err = errors.Trace(err)
return nil
}
buildIndexLookUpChecker(b, readerPlan, readerExec)
readerExecs = append(readerExecs, readerExec)
}
e := &CheckTableExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dbName: v.DBName,
table: v.Table,
indexInfos: v.IndexInfos,
is: b.is,
srcs: readerExecs,
exitCh: make(chan struct{}),
retCh: make(chan error, len(readerExecs)),
checkIndex: v.CheckIndex,
}
return e
}
func buildIdxColsConcatHandleCols(tblInfo *model.TableInfo, indexInfo *model.IndexInfo) []*model.ColumnInfo {
handleLen := 1
var pkCols []*model.IndexColumn
if tblInfo.IsCommonHandle {
pkIdx := tables.FindPrimaryIndex(tblInfo)
pkCols = pkIdx.Columns
handleLen = len(pkIdx.Columns)
}
columns := make([]*model.ColumnInfo, 0, len(indexInfo.Columns)+handleLen)
for _, idxCol := range indexInfo.Columns {
columns = append(columns, tblInfo.Columns[idxCol.Offset])
}
if tblInfo.IsCommonHandle {
for _, c := range pkCols {
columns = append(columns, tblInfo.Columns[c.Offset])
}
return columns
}
handleOffset := len(columns)
handleColsInfo := &model.ColumnInfo{
ID: model.ExtraHandleID,
Name: model.ExtraHandleName,
Offset: handleOffset,
}
handleColsInfo.FieldType = *types.NewFieldType(mysql.TypeLonglong)
columns = append(columns, handleColsInfo)
return columns
}
func (b *executorBuilder) buildRecoverIndex(v *plannercore.RecoverIndex) Executor {
tblInfo := v.Table.TableInfo
t, err := b.is.TableByName(v.Table.Schema, tblInfo.Name)
if err != nil {
b.err = err
return nil
}
idxName := strings.ToLower(v.IndexName)
index := tables.GetWritableIndexByName(idxName, t)
if index == nil {
b.err = errors.Errorf("index `%v` is not found in table `%v`", v.IndexName, v.Table.Name.O)
return nil
}
e := &RecoverIndexExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
columns: buildIdxColsConcatHandleCols(tblInfo, index.Meta()),
index: index,
table: t,
physicalID: t.Meta().ID,
}
sessCtx := e.ctx.GetSessionVars().StmtCtx
e.handleCols = buildHandleColsForExec(sessCtx, tblInfo, index.Meta(), e.columns)
return e
}
func buildHandleColsForExec(sctx *stmtctx.StatementContext, tblInfo *model.TableInfo,
idxInfo *model.IndexInfo, allColInfo []*model.ColumnInfo) plannercore.HandleCols {
if !tblInfo.IsCommonHandle {
extraColPos := len(allColInfo) - 1
intCol := &expression.Column{
Index: extraColPos,
RetType: types.NewFieldType(mysql.TypeLonglong),
}
return plannercore.NewIntHandleCols(intCol)
}
tblCols := make([]*expression.Column, len(tblInfo.Columns))
for i := 0; i < len(tblInfo.Columns); i++ {
c := tblInfo.Columns[i]
tblCols[i] = &expression.Column{
RetType: &c.FieldType,
ID: c.ID,
}
}
pkIdx := tables.FindPrimaryIndex(tblInfo)
for i, c := range pkIdx.Columns {
tblCols[c.Offset].Index = len(idxInfo.Columns) + i
}
return plannercore.NewCommonHandleCols(sctx, tblInfo, pkIdx, tblCols)
}
func (b *executorBuilder) buildCleanupIndex(v *plannercore.CleanupIndex) Executor {
tblInfo := v.Table.TableInfo
t, err := b.is.TableByName(v.Table.Schema, tblInfo.Name)
if err != nil {
b.err = err
return nil
}
idxName := strings.ToLower(v.IndexName)
var index table.Index
for _, idx := range t.Indices() {
if idx.Meta().State != model.StatePublic {
continue
}
if idxName == idx.Meta().Name.L {
index = idx
break
}
}
if index == nil {
b.err = errors.Errorf("index `%v` is not found in table `%v`", v.IndexName, v.Table.Name.O)
return nil
}
e := &CleanupIndexExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
columns: buildIdxColsConcatHandleCols(tblInfo, index.Meta()),
index: index,
table: t,
physicalID: t.Meta().ID,
batchSize: 20000,
}
sessCtx := e.ctx.GetSessionVars().StmtCtx
e.handleCols = buildHandleColsForExec(sessCtx, tblInfo, index.Meta(), e.columns)
return e
}
func (b *executorBuilder) buildCheckIndexRange(v *plannercore.CheckIndexRange) Executor {
tb, err := b.is.TableByName(v.Table.Schema, v.Table.Name)
if err != nil {
b.err = err
return nil
}
e := &CheckIndexRangeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
handleRanges: v.HandleRanges,
table: tb.Meta(),
is: b.is,
}
idxName := strings.ToLower(v.IndexName)
for _, idx := range tb.Indices() {
if idx.Meta().Name.L == idxName {
e.index = idx.Meta()
e.startKey = make([]types.Datum, len(e.index.Columns))
break
}
}
return e
}
func (b *executorBuilder) buildChecksumTable(v *plannercore.ChecksumTable) Executor {
e := &ChecksumTableExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tables: make(map[int64]*checksumContext),
done: false,
}
startTs, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
for _, t := range v.Tables {
e.tables[t.TableInfo.ID] = newChecksumContext(t.DBInfo, t.TableInfo, startTs)
}
return e
}
func (b *executorBuilder) buildReloadExprPushdownBlacklist(v *plannercore.ReloadExprPushdownBlacklist) Executor {
return &ReloadExprPushdownBlacklistExec{baseExecutor{ctx: b.ctx}}
}
func (b *executorBuilder) buildReloadOptRuleBlacklist(v *plannercore.ReloadOptRuleBlacklist) Executor {
return &ReloadOptRuleBlacklistExec{baseExecutor{ctx: b.ctx}}
}
func (b *executorBuilder) buildAdminPlugins(v *plannercore.AdminPlugins) Executor {
return &AdminPluginsExec{baseExecutor: baseExecutor{ctx: b.ctx}, Action: v.Action, Plugins: v.Plugins}
}
func (b *executorBuilder) buildDeallocate(v *plannercore.Deallocate) Executor {
base := newBaseExecutor(b.ctx, nil, v.ID())
base.initCap = chunk.ZeroCapacity
e := &DeallocateExec{
baseExecutor: base,
Name: v.Name,
}
return e
}
func (b *executorBuilder) buildSelectLock(v *plannercore.PhysicalLock) Executor {
if !b.inSelectLockStmt {
b.inSelectLockStmt = true
defer func() { b.inSelectLockStmt = false }()
}
b.hasLock = true
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
if !b.ctx.GetSessionVars().InTxn() {
// Locking of rows for update using SELECT FOR UPDATE only applies when autocommit
// is disabled (either by beginning transaction with START TRANSACTION or by setting
// autocommit to 0. If autocommit is enabled, the rows matching the specification are not locked.
// See https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html
return src
}
e := &SelectLockExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
Lock: v.Lock,
tblID2Handle: v.TblID2Handle,
tblID2PhysTblIDCol: v.TblID2PhysTblIDCol,
}
// filter out temporary tables because they do not store any record in tikv and should not write any lock
is := e.ctx.GetInfoSchema().(infoschema.InfoSchema)
for tblID := range e.tblID2Handle {
tblInfo, ok := is.TableByID(tblID)
if !ok {
b.err = errors.Errorf("Can not get table %d", tblID)
}
if tblInfo.Meta().TempTableType != model.TempTableNone {
delete(e.tblID2Handle, tblID)
}
}
return e
}
func (b *executorBuilder) buildLimit(v *plannercore.PhysicalLimit) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
n := int(mathutil.Min(v.Count, uint64(b.ctx.GetSessionVars().MaxChunkSize)))
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
base.initCap = n
e := &LimitExec{
baseExecutor: base,
begin: v.Offset,
end: v.Offset + v.Count,
}
childUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema())[0]
e.columnIdxsUsedByChild = make([]int, 0, len(childUsedSchema))
for i, used := range childUsedSchema {
if used {
e.columnIdxsUsedByChild = append(e.columnIdxsUsedByChild, i)
}
}
if len(e.columnIdxsUsedByChild) == len(childUsedSchema) {
e.columnIdxsUsedByChild = nil // indicates that all columns are used. LimitExec will improve performance for this condition.
}
return e
}
func (b *executorBuilder) buildPrepare(v *plannercore.Prepare) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
return &PrepareExec{
baseExecutor: base,
name: v.Name,
sqlText: v.SQLText,
}
}
func (b *executorBuilder) buildExecute(v *plannercore.Execute) Executor {
e := &ExecuteExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
name: v.Name,
usingVars: v.Params,
stmt: v.Stmt,
plan: v.Plan,
outputNames: v.OutputNames(),
}
failpoint.Inject("assertExecutePrepareStatementStalenessOption", func(val failpoint.Value) {
vs := strings.Split(val.(string), "_")
assertTS, assertReadReplicaScope := vs[0], vs[1]
staleread.AssertStmtStaleness(b.ctx, true)
ts, err := sessiontxn.GetTxnManager(b.ctx).GetStmtReadTS()
if err != nil {
panic(e)
}
if strconv.FormatUint(ts, 10) != assertTS ||
assertReadReplicaScope != b.readReplicaScope {
panic("execute prepare statement have wrong staleness option")
}
})
return e
}
func (b *executorBuilder) buildShow(v *plannercore.PhysicalShow) Executor {
e := &ShowExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
Tp: v.Tp,
CountWarningsOrErrors: v.CountWarningsOrErrors,
DBName: model.NewCIStr(v.DBName),
Table: v.Table,
Partition: v.Partition,
Column: v.Column,
IndexName: v.IndexName,
Flag: v.Flag,
Roles: v.Roles,
User: v.User,
is: b.is,
Full: v.Full,
IfNotExists: v.IfNotExists,
GlobalScope: v.GlobalScope,
Extended: v.Extended,
Extractor: v.Extractor,
}
if e.Tp == ast.ShowMasterStatus {
// show master status need start ts.
if _, err := e.ctx.Txn(true); err != nil {
b.err = err
}
}
return e
}
func (b *executorBuilder) buildSimple(v *plannercore.Simple) Executor {
switch s := v.Statement.(type) {
case *ast.GrantStmt:
return b.buildGrant(s)
case *ast.RevokeStmt:
return b.buildRevoke(s)
case *ast.BRIEStmt:
return b.buildBRIE(s, v.Schema())
case *ast.CreateUserStmt, *ast.AlterUserStmt:
var lockOptions []*ast.PasswordOrLockOption
if b.Ti.AccountLockTelemetry == nil {
b.Ti.AccountLockTelemetry = &AccountLockTelemetryInfo{}
}
b.Ti.AccountLockTelemetry.CreateOrAlterUser += 1
if stmt, ok := v.Statement.(*ast.CreateUserStmt); ok {
lockOptions = stmt.PasswordOrLockOptions
} else if stmt, ok := v.Statement.(*ast.AlterUserStmt); ok {
lockOptions = stmt.PasswordOrLockOptions
}
if len(lockOptions) > 0 {
// Multiple lock options are supported for the parser, but only the last one option takes effect.
for i := len(lockOptions) - 1; i >= 0; i-- {
if lockOptions[i].Type == ast.Lock {
b.Ti.AccountLockTelemetry.LockUser += 1
break
} else if lockOptions[i].Type == ast.Unlock {
b.Ti.AccountLockTelemetry.UnlockUser += 1
break
}
}
}
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
e := &SimpleExec{
baseExecutor: base,
Statement: v.Statement,
IsFromRemote: v.IsFromRemote,
is: b.is,
staleTxnStartTS: v.StaleTxnStartTS,
}
return e
}
func (b *executorBuilder) buildSet(v *plannercore.Set) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
e := &SetExecutor{
baseExecutor: base,
vars: v.VarAssigns,
}
return e
}
func (b *executorBuilder) buildSetConfig(v *plannercore.SetConfig) Executor {
return &SetConfigExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
p: v,
}
}
func (b *executorBuilder) buildInsert(v *plannercore.Insert) Executor {
b.inInsertStmt = true
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
selectExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
var baseExec baseExecutor
if selectExec != nil {
baseExec = newBaseExecutor(b.ctx, nil, v.ID(), selectExec)
} else {
baseExec = newBaseExecutor(b.ctx, nil, v.ID())
}
baseExec.initCap = chunk.ZeroCapacity
ivs := &InsertValues{
baseExecutor: baseExec,
Table: v.Table,
Columns: v.Columns,
Lists: v.Lists,
SetList: v.SetList,
GenExprs: v.GenCols.Exprs,
allAssignmentsAreConstant: v.AllAssignmentsAreConstant,
hasRefCols: v.NeedFillDefaultValue,
SelectExec: selectExec,
rowLen: v.RowLen,
}
err := ivs.initInsertColumns()
if err != nil {
b.err = err
return nil
}
if v.IsReplace {
return b.buildReplace(ivs)
}
insert := &InsertExec{
InsertValues: ivs,
OnDuplicate: append(v.OnDuplicate, v.GenCols.OnDuplicates...),
}
return insert
}
func (b *executorBuilder) buildLoadData(v *plannercore.LoadData) Executor {
tbl, ok := b.is.TableByID(v.Table.TableInfo.ID)
if !ok {
b.err = errors.Errorf("Can not get table %d", v.Table.TableInfo.ID)
return nil
}
insertVal := &InsertValues{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
Table: tbl,
Columns: v.Columns,
GenExprs: v.GenCols.Exprs,
isLoadData: true,
txnInUse: sync.Mutex{},
}
loadDataInfo := &LoadDataInfo{
row: make([]types.Datum, 0, len(insertVal.insertColumns)),
InsertValues: insertVal,
Path: v.Path,
Table: tbl,
FieldsInfo: v.FieldsInfo,
LinesInfo: v.LinesInfo,
IgnoreLines: v.IgnoreLines,
ColumnAssignments: v.ColumnAssignments,
ColumnsAndUserVars: v.ColumnsAndUserVars,
Ctx: b.ctx,
}
columnNames := loadDataInfo.initFieldMappings()
err := loadDataInfo.initLoadColumns(columnNames)
if err != nil {
b.err = err
return nil
}
loadDataExec := &LoadDataExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
IsLocal: v.IsLocal,
OnDuplicate: v.OnDuplicate,
loadDataInfo: loadDataInfo,
}
var defaultLoadDataBatchCnt uint64 = 20000 // TODO this will be changed to variable in another pr
loadDataExec.loadDataInfo.InitQueues()
loadDataExec.loadDataInfo.SetMaxRowsInBatch(defaultLoadDataBatchCnt)
return loadDataExec
}
func (b *executorBuilder) buildLoadStats(v *plannercore.LoadStats) Executor {
e := &LoadStatsExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
info: &LoadStatsInfo{v.Path, b.ctx},
}
return e
}
func (b *executorBuilder) buildIndexAdvise(v *plannercore.IndexAdvise) Executor {
e := &IndexAdviseExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
IsLocal: v.IsLocal,
indexAdviseInfo: &IndexAdviseInfo{
Path: v.Path,
MaxMinutes: v.MaxMinutes,
MaxIndexNum: v.MaxIndexNum,
LinesInfo: v.LinesInfo,
Ctx: b.ctx,
},
}
return e
}
func (b *executorBuilder) buildPlanReplayer(v *plannercore.PlanReplayer) Executor {
if v.Load {
e := &PlanReplayerLoadExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
info: &PlanReplayerLoadInfo{Path: v.File, Ctx: b.ctx},
}
return e
}
e := &PlanReplayerExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
DumpInfo: &PlanReplayerDumpInfo{
Analyze: v.Analyze,
Path: v.File,
ctx: b.ctx,
},
}
if v.ExecStmt != nil {
e.DumpInfo.ExecStmts = []ast.StmtNode{v.ExecStmt}
} else {
e.baseExecutor = newBaseExecutor(b.ctx, nil, v.ID())
}
return e
}
func (b *executorBuilder) buildReplace(vals *InsertValues) Executor {
replaceExec := &ReplaceExec{
InsertValues: vals,
}
return replaceExec
}
func (b *executorBuilder) buildGrant(grant *ast.GrantStmt) Executor {
e := &GrantExec{
baseExecutor: newBaseExecutor(b.ctx, nil, 0),
Privs: grant.Privs,
ObjectType: grant.ObjectType,
Level: grant.Level,
Users: grant.Users,
WithGrant: grant.WithGrant,
TLSOptions: grant.TLSOptions,
is: b.is,
}
return e
}
func (b *executorBuilder) buildRevoke(revoke *ast.RevokeStmt) Executor {
e := &RevokeExec{
baseExecutor: newBaseExecutor(b.ctx, nil, 0),
ctx: b.ctx,
Privs: revoke.Privs,
ObjectType: revoke.ObjectType,
Level: revoke.Level,
Users: revoke.Users,
is: b.is,
}
return e
}
func (b *executorBuilder) setTelemetryInfo(v *plannercore.DDL) {
if v == nil || b.Ti == nil {
return
}
switch s := v.Statement.(type) {
case *ast.AlterTableStmt:
if len(s.Specs) > 1 {
b.Ti.UseMultiSchemaChange = true
}
for _, spec := range s.Specs {
switch spec.Tp {
case ast.AlterTableDropFirstPartition:
if b.Ti.PartitionTelemetry == nil {
b.Ti.PartitionTelemetry = &PartitionTelemetryInfo{}
}
b.Ti.PartitionTelemetry.UseDropIntervalPartition = true
case ast.AlterTableAddLastPartition:
if b.Ti.PartitionTelemetry == nil {
b.Ti.PartitionTelemetry = &PartitionTelemetryInfo{}
}
b.Ti.PartitionTelemetry.UseAddIntervalPartition = true
}
}
case *ast.CreateTableStmt:
if s.Partition == nil || strings.EqualFold(b.ctx.GetSessionVars().EnableTablePartition, "OFF") {
break
}
p := s.Partition
if b.Ti.PartitionTelemetry == nil {
b.Ti.PartitionTelemetry = &PartitionTelemetryInfo{}
}
b.Ti.PartitionTelemetry.TablePartitionMaxPartitionsNum = mathutil.Max(p.Num, uint64(len(p.Definitions)))
b.Ti.PartitionTelemetry.UseTablePartition = true
switch p.Tp {
case model.PartitionTypeRange:
if p.Sub == nil {
if len(p.ColumnNames) > 0 {
b.Ti.PartitionTelemetry.UseTablePartitionRangeColumns = true
if len(p.ColumnNames) > 1 {
b.Ti.PartitionTelemetry.UseTablePartitionRangeColumnsGt1 = true
}
if len(p.ColumnNames) > 2 {
b.Ti.PartitionTelemetry.UseTablePartitionRangeColumnsGt2 = true
}
if len(p.ColumnNames) > 3 {
b.Ti.PartitionTelemetry.UseTablePartitionRangeColumnsGt3 = true
}
} else {
b.Ti.PartitionTelemetry.UseTablePartitionRange = true
}
if p.Interval != nil {
b.Ti.PartitionTelemetry.UseCreateIntervalPartition = true
}
}
case model.PartitionTypeHash:
if !p.Linear && p.Sub == nil {
b.Ti.PartitionTelemetry.UseTablePartitionHash = true
}
case model.PartitionTypeList:
enable := b.ctx.GetSessionVars().EnableListTablePartition
if p.Sub == nil && enable {
if len(p.ColumnNames) > 0 {
b.Ti.PartitionTelemetry.UseTablePartitionListColumns = true
} else {
b.Ti.PartitionTelemetry.UseTablePartitionList = true
}
}
}
}
}
func (b *executorBuilder) buildDDL(v *plannercore.DDL) Executor {
b.setTelemetryInfo(v)
e := &DDLExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
stmt: v.Statement,
is: b.is,
tempTableDDL: temptable.GetTemporaryTableDDL(b.ctx),
}
return e
}
// buildTrace builds a TraceExec for future executing. This method will be called
// at build().
func (b *executorBuilder) buildTrace(v *plannercore.Trace) Executor {
t := &TraceExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
stmtNode: v.StmtNode,
builder: b,
format: v.Format,
optimizerTrace: v.OptimizerTrace,
optimizerTraceTarget: v.OptimizerTraceTarget,
}
if t.format == plannercore.TraceFormatLog && !t.optimizerTrace {
return &SortExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), t),
ByItems: []*plannerutil.ByItems{
{Expr: &expression.Column{
Index: 0,
RetType: types.NewFieldType(mysql.TypeTimestamp),
}},
},
schema: v.Schema(),
}
}
return t
}
// buildExplain builds a explain executor. `e.rows` collects final result to `ExplainExec`.
func (b *executorBuilder) buildExplain(v *plannercore.Explain) Executor {
explainExec := &ExplainExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
explain: v,
}
if v.Analyze {
if b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl == nil {
b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl = execdetails.NewRuntimeStatsColl(nil)
}
explainExec.analyzeExec = b.build(v.TargetPlan)
}
return explainExec
}
func (b *executorBuilder) buildSelectInto(v *plannercore.SelectInto) Executor {
child := b.build(v.TargetPlan)
if b.err != nil {
return nil
}
return &SelectIntoExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), child),
intoOpt: v.IntoOpt,
}
}
func (b *executorBuilder) buildUnionScanExec(v *plannercore.PhysicalUnionScan) Executor {
reader := b.build(v.Children()[0])
if b.err != nil {
return nil
}
return b.buildUnionScanFromReader(reader, v)
}
// buildUnionScanFromReader builds union scan executor from child executor.
// Note that this function may be called by inner workers of index lookup join concurrently.
// Be careful to avoid data race.
func (b *executorBuilder) buildUnionScanFromReader(reader Executor, v *plannercore.PhysicalUnionScan) Executor {
// If reader is union, it means a partition table and we should transfer as above.
if x, ok := reader.(*UnionExec); ok {
for i, child := range x.children {
x.children[i] = b.buildUnionScanFromReader(child, v)
if b.err != nil {
return nil
}
}
return x
}
us := &UnionScanExec{baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), reader)}
// Get the handle column index of the below Plan.
us.belowHandleCols = v.HandleCols
us.mutableRow = chunk.MutRowFromTypes(retTypes(us))
// If the push-downed condition contains virtual column, we may build a selection upon reader
originReader := reader
if sel, ok := reader.(*SelectionExec); ok {
reader = sel.children[0]
}
us.collators = make([]collate.Collator, 0, len(us.columns))
for _, tp := range retTypes(us) {
us.collators = append(us.collators, collate.GetCollator(tp.GetCollate()))
}
startTS, err := b.getSnapshotTS()
sessionVars := b.ctx.GetSessionVars()
if err != nil {
b.err = err
return nil
}
switch x := reader.(type) {
case *TableReaderExecutor:
us.desc = x.desc
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = x.virtualColumnIndex
us.handleCachedTable(b, x, sessionVars, startTS)
case *IndexReaderExecutor:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.columns {
if col.Name.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.handleCachedTable(b, x, sessionVars, startTS)
case *IndexLookUpExecutor:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.columns {
if col.Name.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = buildVirtualColumnIndex(us.Schema(), us.columns)
us.handleCachedTable(b, x, sessionVars, startTS)
case *IndexMergeReaderExecutor:
// IndexMergeReader doesn't care order for now. So we will not set desc and useIndex.
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = buildVirtualColumnIndex(us.Schema(), us.columns)
default:
// The mem table will not be written by sql directly, so we can omit the union scan to avoid err reporting.
return originReader
}
return us
}
type bypassDataSourceExecutor interface {
dataSourceExecutor
setDummy()
}
func (us *UnionScanExec) handleCachedTable(b *executorBuilder, x bypassDataSourceExecutor, vars *variable.SessionVars, startTS uint64) {
tbl := x.Table()
if tbl.Meta().TableCacheStatusType == model.TableCacheStatusEnable {
cachedTable := tbl.(table.CachedTable)
// Determine whether the cache can be used.
leaseDuration := time.Duration(variable.TableCacheLease.Load()) * time.Second
cacheData, loading := cachedTable.TryReadFromCache(startTS, leaseDuration)
if cacheData != nil {
vars.StmtCtx.ReadFromTableCache = true
x.setDummy()
us.cacheTable = cacheData
} else if loading {
// continue
} else {
if !b.inUpdateStmt && !b.inDeleteStmt && !b.inInsertStmt && !vars.StmtCtx.InExplainStmt {
store := b.ctx.GetStore()
cachedTable.UpdateLockForRead(context.Background(), store, startTS, leaseDuration)
}
}
}
}
// buildMergeJoin builds MergeJoinExec executor.
func (b *executorBuilder) buildMergeJoin(v *plannercore.PhysicalMergeJoin) Executor {
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
defaultValues := v.DefaultValues
if defaultValues == nil {
if v.JoinType == plannercore.RightOuterJoin {
defaultValues = make([]types.Datum, leftExec.Schema().Len())
} else {
defaultValues = make([]types.Datum, rightExec.Schema().Len())
}
}
e := &MergeJoinExec{
stmtCtx: b.ctx.GetSessionVars().StmtCtx,
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
compareFuncs: v.CompareFuncs,
joiner: newJoiner(
b.ctx,
v.JoinType,
v.JoinType == plannercore.RightOuterJoin,
defaultValues,
v.OtherConditions,
retTypes(leftExec),
retTypes(rightExec),
markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema()),
),
isOuterJoin: v.JoinType.IsOuterJoin(),
desc: v.Desc,
}
leftTable := &mergeJoinTable{
childIndex: 0,
joinKeys: v.LeftJoinKeys,
filters: v.LeftConditions,
}
rightTable := &mergeJoinTable{
childIndex: 1,
joinKeys: v.RightJoinKeys,
filters: v.RightConditions,
}
if v.JoinType == plannercore.RightOuterJoin {
e.innerTable = leftTable
e.outerTable = rightTable
} else {
e.innerTable = rightTable
e.outerTable = leftTable
}
e.innerTable.isInner = true
// optimizer should guarantee that filters on inner table are pushed down
// to tikv or extracted to a Selection.
if len(e.innerTable.filters) != 0 {
b.err = errors.Annotate(ErrBuildExecutor, "merge join's inner filter should be empty.")
return nil
}
executorCounterMergeJoinExec.Inc()
return e
}
func (b *executorBuilder) buildSideEstCount(v *plannercore.PhysicalHashJoin) float64 {
buildSide := v.Children()[v.InnerChildIdx]
if v.UseOuterToBuild {
buildSide = v.Children()[1-v.InnerChildIdx]
}
if buildSide.Stats().HistColl == nil || buildSide.Stats().HistColl.Pseudo {
return 0.0
}
return buildSide.StatsCount()
}
func (b *executorBuilder) buildHashJoin(v *plannercore.PhysicalHashJoin) Executor {
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
e := &HashJoinExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
concurrency: v.Concurrency,
joinType: v.JoinType,
isOuterJoin: v.JoinType.IsOuterJoin(),
useOuterToBuild: v.UseOuterToBuild,
}
defaultValues := v.DefaultValues
lhsTypes, rhsTypes := retTypes(leftExec), retTypes(rightExec)
if v.InnerChildIdx == 1 {
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
leftIsBuildSide := true
e.isNullEQ = v.IsNullEQ
if v.UseOuterToBuild {
// update the buildSideEstCount due to changing the build side
if v.InnerChildIdx == 1 {
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.LeftConditions
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.RightConditions
leftIsBuildSide = false
}
if defaultValues == nil {
defaultValues = make([]types.Datum, e.probeSideExec.Schema().Len())
}
} else {
if v.InnerChildIdx == 0 {
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.RightConditions
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.LeftConditions
leftIsBuildSide = false
}
if defaultValues == nil {
defaultValues = make([]types.Datum, e.buildSideExec.Schema().Len())
}
}
e.buildSideEstCount = b.buildSideEstCount(v)
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
e.joiners = make([]joiner, e.concurrency)
for i := uint(0); i < e.concurrency; i++ {
e.joiners[i] = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues,
v.OtherConditions, lhsTypes, rhsTypes, childrenUsedSchema)
}
executorCountHashJoinExec.Inc()
// We should use JoinKey to construct the type information using by hashing, instead of using the child's schema directly.
// When a hybrid type column is hashed multiple times, we need to distinguish what field types are used.
// For example, the condition `enum = int and enum = string`, we should use ETInt to hash the first column,
// and use ETString to hash the second column, although they may be the same column.
leftExecTypes, rightExecTypes := retTypes(leftExec), retTypes(rightExec)
leftTypes, rightTypes := make([]*types.FieldType, 0, len(v.LeftJoinKeys)), make([]*types.FieldType, 0, len(v.RightJoinKeys))
for i, col := range v.LeftJoinKeys {
leftTypes = append(leftTypes, leftExecTypes[col.Index].Clone())
leftTypes[i].SetFlag(col.RetType.GetFlag())
}
for i, col := range v.RightJoinKeys {
rightTypes = append(rightTypes, rightExecTypes[col.Index].Clone())
rightTypes[i].SetFlag(col.RetType.GetFlag())
}
// consider collations
for i := range v.EqualConditions {
chs, coll := v.EqualConditions[i].CharsetAndCollation()
leftTypes[i].SetCharset(chs)
leftTypes[i].SetCollate(coll)
rightTypes[i].SetCharset(chs)
rightTypes[i].SetCollate(coll)
}
if leftIsBuildSide {
e.buildTypes, e.probeTypes = leftTypes, rightTypes
} else {
e.buildTypes, e.probeTypes = rightTypes, leftTypes
}
return e
}
func (b *executorBuilder) buildHashAgg(v *plannercore.PhysicalHashAgg) Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sessionVars := b.ctx.GetSessionVars()
e := &HashAggExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
sc: sessionVars.StmtCtx,
PartialAggFuncs: make([]aggfuncs.AggFunc, 0, len(v.AggFuncs)),
GroupByItems: v.GroupByItems,
}
// We take `create table t(a int, b int);` as example.
//
// 1. If all the aggregation functions are FIRST_ROW, we do not need to set the defaultVal for them:
// e.g.
// mysql> select distinct a, b from t;
// 0 rows in set (0.00 sec)
//
// 2. If there exists group by items, we do not need to set the defaultVal for them either:
// e.g.
// mysql> select avg(a) from t group by b;
// Empty set (0.00 sec)
//
// mysql> select avg(a) from t group by a;
// +--------+
// | avg(a) |
// +--------+
// | NULL |
// +--------+
// 1 row in set (0.00 sec)
if len(v.GroupByItems) != 0 || aggregation.IsAllFirstRow(v.AggFuncs) {
e.defaultVal = nil
} else {
if v.IsFinalAgg() {
e.defaultVal = chunk.NewChunkWithCapacity(retTypes(e), 1)
}
}
for _, aggDesc := range v.AggFuncs {
if aggDesc.HasDistinct || len(aggDesc.OrderByItems) > 0 {
e.isUnparallelExec = true
}
}
// When we set both tidb_hashagg_final_concurrency and tidb_hashagg_partial_concurrency to 1,
// we do not need to parallelly execute hash agg,
// and this action can be a workaround when meeting some unexpected situation using parallelExec.
if finalCon, partialCon := sessionVars.HashAggFinalConcurrency(), sessionVars.HashAggPartialConcurrency(); finalCon <= 0 || partialCon <= 0 || finalCon == 1 && partialCon == 1 {
e.isUnparallelExec = true
}
partialOrdinal := 0
for i, aggDesc := range v.AggFuncs {
if e.isUnparallelExec {
e.PartialAggFuncs = append(e.PartialAggFuncs, aggfuncs.Build(b.ctx, aggDesc, i))
} else {
ordinal := []int{partialOrdinal}
partialOrdinal++
if aggDesc.Name == ast.AggFuncAvg {
ordinal = append(ordinal, partialOrdinal+1)
partialOrdinal++
}
partialAggDesc, finalDesc := aggDesc.Split(ordinal)
partialAggFunc := aggfuncs.Build(b.ctx, partialAggDesc, i)
finalAggFunc := aggfuncs.Build(b.ctx, finalDesc, i)
e.PartialAggFuncs = append(e.PartialAggFuncs, partialAggFunc)
e.FinalAggFuncs = append(e.FinalAggFuncs, finalAggFunc)
if partialAggDesc.Name == ast.AggFuncGroupConcat {
// For group_concat, finalAggFunc and partialAggFunc need shared `truncate` flag to do duplicate.
finalAggFunc.(interface{ SetTruncated(t *int32) }).SetTruncated(
partialAggFunc.(interface{ GetTruncated() *int32 }).GetTruncated(),
)
}
}
if e.defaultVal != nil {
value := aggDesc.GetDefaultValue()
e.defaultVal.AppendDatum(i, &value)
}
}
executorCounterHashAggExec.Inc()
return e
}
func (b *executorBuilder) buildStreamAgg(v *plannercore.PhysicalStreamAgg) Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &StreamAggExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
groupChecker: newVecGroupChecker(b.ctx, v.GroupByItems),
aggFuncs: make([]aggfuncs.AggFunc, 0, len(v.AggFuncs)),
}
if len(v.GroupByItems) != 0 || aggregation.IsAllFirstRow(v.AggFuncs) {
e.defaultVal = nil
} else {
// Only do this for final agg, see issue #35295, #30923
if v.IsFinalAgg() {
e.defaultVal = chunk.NewChunkWithCapacity(retTypes(e), 1)
}
}
for i, aggDesc := range v.AggFuncs {
aggFunc := aggfuncs.Build(b.ctx, aggDesc, i)
e.aggFuncs = append(e.aggFuncs, aggFunc)
if e.defaultVal != nil {
value := aggDesc.GetDefaultValue()
e.defaultVal.AppendDatum(i, &value)
}
}
executorStreamAggExec.Inc()
return e
}
func (b *executorBuilder) buildSelection(v *plannercore.PhysicalSelection) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &SelectionExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
filters: v.Conditions,
}
return e
}
func (b *executorBuilder) buildProjection(v *plannercore.PhysicalProjection) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &ProjectionExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
numWorkers: int64(b.ctx.GetSessionVars().ProjectionConcurrency()),
evaluatorSuit: expression.NewEvaluatorSuite(v.Exprs, v.AvoidColumnEvaluator),
calculateNoDelay: v.CalculateNoDelay,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(b.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
// Use un-parallel projection for query that write on memdb to avoid data race.
// See also https://github.com/pingcap/tidb/issues/26832
if b.inUpdateStmt || b.inDeleteStmt || b.inInsertStmt || b.hasLock {
e.numWorkers = 0
}
return e
}
func (b *executorBuilder) buildTableDual(v *plannercore.PhysicalTableDual) Executor {
if v.RowCount != 0 && v.RowCount != 1 {
b.err = errors.Errorf("buildTableDual failed, invalid row count for dual table: %v", v.RowCount)
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = v.RowCount
e := &TableDualExec{
baseExecutor: base,
numDualRows: v.RowCount,
}
return e
}
// `getSnapshotTS` returns for-update-ts if in insert/update/delete/lock statement otherwise the isolation read ts
// Please notice that in RC isolation, the above two ts are the same
func (b *executorBuilder) getSnapshotTS() (uint64, error) {
if b.forDataReaderBuilder {
return b.dataReaderTS, nil
}
txnManager := sessiontxn.GetTxnManager(b.ctx)
if b.inInsertStmt || b.inUpdateStmt || b.inDeleteStmt || b.inSelectLockStmt {
return txnManager.GetStmtForUpdateTS()
}
return txnManager.GetStmtReadTS()
}
// getSnapshot get the appropriate snapshot from txnManager and set
// the relevant snapshot options before return.
func (b *executorBuilder) getSnapshot() (kv.Snapshot, error) {
var snapshot kv.Snapshot
var err error
txnManager := sessiontxn.GetTxnManager(b.ctx)
if b.inInsertStmt || b.inUpdateStmt || b.inDeleteStmt || b.inSelectLockStmt {
snapshot, err = txnManager.GetSnapshotWithStmtForUpdateTS()
} else {
snapshot, err = txnManager.GetSnapshotWithStmtReadTS()
}
if err != nil {
return nil, err
}
sessVars := b.ctx.GetSessionVars()
replicaReadType := sessVars.GetReplicaRead()
snapshot.SetOption(kv.ReadReplicaScope, b.readReplicaScope)
snapshot.SetOption(kv.TaskID, sessVars.StmtCtx.TaskID)
if replicaReadType.IsClosestRead() && b.readReplicaScope != kv.GlobalTxnScope {
snapshot.SetOption(kv.MatchStoreLabels, []*metapb.StoreLabel{
{
Key: placement.DCLabelKey,
Value: b.readReplicaScope,
},
})
}
return snapshot, nil
}
func (b *executorBuilder) buildMemTable(v *plannercore.PhysicalMemTable) Executor {
switch v.DBName.L {
case util.MetricSchemaName.L:
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricTableExtractor),
},
}
case util.InformationSchemaName.L:
switch v.Table.Name.L {
case strings.ToLower(infoschema.TableClusterConfig):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterConfigRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
},
}
case strings.ToLower(infoschema.TableClusterLoad):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_LoadInfo,
},
}
case strings.ToLower(infoschema.TableClusterHardware):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_HardwareInfo,
},
}
case strings.ToLower(infoschema.TableClusterSystemInfo):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_SystemInfo,
},
}
case strings.ToLower(infoschema.TableClusterLog):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterLogRetriever{
extractor: v.Extractor.(*plannercore.ClusterLogTableExtractor),
},
}
case strings.ToLower(infoschema.TableTiDBHotRegionsHistory):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &hotRegionsHistoryRetriver{
extractor: v.Extractor.(*plannercore.HotRegionsHistoryTableExtractor),
},
}
case strings.ToLower(infoschema.TableInspectionResult):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionResultRetriever{
extractor: v.Extractor.(*plannercore.InspectionResultTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableInspectionSummary):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionSummaryRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.InspectionSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableInspectionRules):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionRuleRetriever{
extractor: v.Extractor.(*plannercore.InspectionRuleTableExtractor),
},
}
case strings.ToLower(infoschema.TableMetricSummary):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricsSummaryRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableMetricSummaryByLabel):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricsSummaryByLabelRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableTiKVRegionPeers):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tikvRegionPeersRetriever{
extractor: v.Extractor.(*plannercore.TikvRegionPeersExtractor),
},
}
case strings.ToLower(infoschema.TableSchemata),
strings.ToLower(infoschema.TableStatistics),
strings.ToLower(infoschema.TableTiDBIndexes),
strings.ToLower(infoschema.TableViews),
strings.ToLower(infoschema.TableTables),
strings.ToLower(infoschema.TableReferConst),
strings.ToLower(infoschema.TableSequences),
strings.ToLower(infoschema.TablePartitions),
strings.ToLower(infoschema.TableEngines),
strings.ToLower(infoschema.TableCollations),
strings.ToLower(infoschema.TableAnalyzeStatus),
strings.ToLower(infoschema.TableClusterInfo),
strings.ToLower(infoschema.TableProfiling),
strings.ToLower(infoschema.TableCharacterSets),
strings.ToLower(infoschema.TableKeyColumn),
strings.ToLower(infoschema.TableUserPrivileges),
strings.ToLower(infoschema.TableMetricTables),
strings.ToLower(infoschema.TableCollationCharacterSetApplicability),
strings.ToLower(infoschema.TableProcesslist),
strings.ToLower(infoschema.ClusterTableProcesslist),
strings.ToLower(infoschema.TableTiKVRegionStatus),
strings.ToLower(infoschema.TableTiDBHotRegions),
strings.ToLower(infoschema.TableSessionVar),
strings.ToLower(infoschema.TableConstraints),
strings.ToLower(infoschema.TableTiFlashReplica),
strings.ToLower(infoschema.TableTiDBServersInfo),
strings.ToLower(infoschema.TableTiKVStoreStatus),
strings.ToLower(infoschema.TableStatementsSummaryEvicted),
strings.ToLower(infoschema.ClusterTableStatementsSummaryEvicted),
strings.ToLower(infoschema.TableClientErrorsSummaryGlobal),
strings.ToLower(infoschema.TableClientErrorsSummaryByUser),
strings.ToLower(infoschema.TableClientErrorsSummaryByHost),
strings.ToLower(infoschema.TableAttributes),
strings.ToLower(infoschema.TablePlacementPolicies),
strings.ToLower(infoschema.TableTrxSummary),
strings.ToLower(infoschema.TableVariablesInfo),
strings.ToLower(infoschema.ClusterTableTrxSummary):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &memtableRetriever{
table: v.Table,
columns: v.Columns,
extractor: v.Extractor,
},
}
case strings.ToLower(infoschema.TableTiDBTrx),
strings.ToLower(infoschema.ClusterTableTiDBTrx):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tidbTrxTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableDataLockWaits):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &dataLockWaitsTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableDeadlocks),
strings.ToLower(infoschema.ClusterTableDeadlocks):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &deadlocksTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableStatementsSummary),
strings.ToLower(infoschema.TableStatementsSummaryHistory),
strings.ToLower(infoschema.ClusterTableStatementsSummaryHistory),
strings.ToLower(infoschema.ClusterTableStatementsSummary):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &stmtSummaryTableRetriever{
table: v.Table,
columns: v.Columns,
extractor: v.Extractor.(*plannercore.StatementsSummaryExtractor),
},
}
case strings.ToLower(infoschema.TableColumns):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &hugeMemTableRetriever{
table: v.Table,
columns: v.Columns,
extractor: v.Extractor.(*plannercore.ColumnsTableExtractor),
viewSchemaMap: make(map[int64]*expression.Schema),
viewOutputNamesMap: make(map[int64]types.NameSlice),
},
}
case strings.ToLower(infoschema.TableSlowQuery), strings.ToLower(infoschema.ClusterTableSlowLog):
memTracker := memory.NewTracker(v.ID(), -1)
memTracker.AttachTo(b.ctx.GetSessionVars().StmtCtx.MemTracker)
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &slowQueryRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.SlowQueryExtractor),
memTracker: memTracker,
},
}
case strings.ToLower(infoschema.TableStorageStats):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tableStorageStatsRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.TableStorageStatsExtractor),
},
}
case strings.ToLower(infoschema.TableDDLJobs):
loc := b.ctx.GetSessionVars().Location()
ddlJobRetriever := DDLJobRetriever{TZLoc: loc}
return &DDLJobsReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
DDLJobRetriever: ddlJobRetriever,
}
case strings.ToLower(infoschema.TableTiFlashTables),
strings.ToLower(infoschema.TableTiFlashSegments):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &TiFlashSystemTableRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.TiFlashSystemTableExtractor),
},
}
}
}
tb, _ := b.is.TableByID(v.Table.ID)
return &TableScanExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
t: tb,
columns: v.Columns,
}
}
func (b *executorBuilder) buildSort(v *plannercore.PhysicalSort) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sortExec := SortExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
ByItems: v.ByItems,
schema: v.Schema(),
}
executorCounterSortExec.Inc()
return &sortExec
}
func (b *executorBuilder) buildTopN(v *plannercore.PhysicalTopN) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sortExec := SortExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
ByItems: v.ByItems,
schema: v.Schema(),
}
executorCounterTopNExec.Inc()
return &TopNExec{
SortExec: sortExec,
limit: &plannercore.PhysicalLimit{Count: v.Count, Offset: v.Offset},
}
}
func (b *executorBuilder) buildApply(v *plannercore.PhysicalApply) Executor {
var (
innerPlan plannercore.PhysicalPlan
outerPlan plannercore.PhysicalPlan
)
if v.InnerChildIdx == 0 {
innerPlan = v.Children()[0]
outerPlan = v.Children()[1]
} else {
innerPlan = v.Children()[1]
outerPlan = v.Children()[0]
}
v.OuterSchema = plannercore.ExtractCorColumnsBySchema4PhysicalPlan(innerPlan, outerPlan.Schema())
leftChild := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightChild := b.build(v.Children()[1])
if b.err != nil {
return nil
}
otherConditions := append(expression.ScalarFuncs2Exprs(v.EqualConditions), v.OtherConditions...)
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, v.Children()[v.InnerChildIdx].Schema().Len())
}
outerExec, innerExec := leftChild, rightChild
outerFilter, innerFilter := v.LeftConditions, v.RightConditions
if v.InnerChildIdx == 0 {
outerExec, innerExec = rightChild, leftChild
outerFilter, innerFilter = v.RightConditions, v.LeftConditions
}
tupleJoiner := newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0,
defaultValues, otherConditions, retTypes(leftChild), retTypes(rightChild), nil)
serialExec := &NestedLoopApplyExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec, innerExec),
innerExec: innerExec,
outerExec: outerExec,
outerFilter: outerFilter,
innerFilter: innerFilter,
outer: v.JoinType != plannercore.InnerJoin,
joiner: tupleJoiner,
outerSchema: v.OuterSchema,
ctx: b.ctx,
canUseCache: v.CanUseCache,
}
executorCounterNestedLoopApplyExec.Inc()
// try parallel mode
if v.Concurrency > 1 {
innerExecs := make([]Executor, 0, v.Concurrency)
innerFilters := make([]expression.CNFExprs, 0, v.Concurrency)
corCols := make([][]*expression.CorrelatedColumn, 0, v.Concurrency)
joiners := make([]joiner, 0, v.Concurrency)
for i := 0; i < v.Concurrency; i++ {
clonedInnerPlan, err := plannercore.SafeClone(innerPlan)
if err != nil {
b.err = nil
return serialExec
}
corCol := plannercore.ExtractCorColumnsBySchema4PhysicalPlan(clonedInnerPlan, outerPlan.Schema())
clonedInnerExec := b.build(clonedInnerPlan)
if b.err != nil {
b.err = nil
return serialExec
}
innerExecs = append(innerExecs, clonedInnerExec)
corCols = append(corCols, corCol)
innerFilters = append(innerFilters, innerFilter.Clone())
joiners = append(joiners, newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0,
defaultValues, otherConditions, retTypes(leftChild), retTypes(rightChild), nil))
}
allExecs := append([]Executor{outerExec}, innerExecs...)
return &ParallelNestedLoopApplyExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), allExecs...),
innerExecs: innerExecs,
outerExec: outerExec,
outerFilter: outerFilter,
innerFilter: innerFilters,
outer: v.JoinType != plannercore.InnerJoin,
joiners: joiners,
corCols: corCols,
concurrency: v.Concurrency,
useCache: v.CanUseCache,
}
}
return serialExec
}
func (b *executorBuilder) buildMaxOneRow(v *plannercore.PhysicalMaxOneRow) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
base.initCap = 2
base.maxChunkSize = 2
e := &MaxOneRowExec{baseExecutor: base}
return e
}
func (b *executorBuilder) buildUnionAll(v *plannercore.PhysicalUnionAll) Executor {
childExecs := make([]Executor, len(v.Children()))
for i, child := range v.Children() {
childExecs[i] = b.build(child)
if b.err != nil {
return nil
}
}
e := &UnionExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExecs...),
concurrency: b.ctx.GetSessionVars().UnionConcurrency(),
}
return e
}
func buildHandleColsForSplit(sc *stmtctx.StatementContext, tbInfo *model.TableInfo) plannercore.HandleCols {
if tbInfo.IsCommonHandle {
primaryIdx := tables.FindPrimaryIndex(tbInfo)
tableCols := make([]*expression.Column, len(tbInfo.Columns))
for i, col := range tbInfo.Columns {
tableCols[i] = &expression.Column{
ID: col.ID,
RetType: &col.FieldType,
}
}
for i, pkCol := range primaryIdx.Columns {
tableCols[pkCol.Offset].Index = i
}
return plannercore.NewCommonHandleCols(sc, tbInfo, primaryIdx, tableCols)
}
intCol := &expression.Column{
RetType: types.NewFieldType(mysql.TypeLonglong),
}
return plannercore.NewIntHandleCols(intCol)
}
func (b *executorBuilder) buildSplitRegion(v *plannercore.SplitRegion) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = 1
base.maxChunkSize = 1
if v.IndexInfo != nil {
return &SplitIndexRegionExec{
baseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
indexInfo: v.IndexInfo,
lower: v.Lower,
upper: v.Upper,
num: v.Num,
valueLists: v.ValueLists,
}
}
handleCols := buildHandleColsForSplit(b.ctx.GetSessionVars().StmtCtx, v.TableInfo)
if len(v.ValueLists) > 0 {
return &SplitTableRegionExec{
baseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
handleCols: handleCols,
valueLists: v.ValueLists,
}
}
return &SplitTableRegionExec{
baseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
handleCols: handleCols,
lower: v.Lower,
upper: v.Upper,
num: v.Num,
}
}
func (b *executorBuilder) buildUpdate(v *plannercore.Update) Executor {
b.inUpdateStmt = true
tblID2table := make(map[int64]table.Table, len(v.TblColPosInfos))
multiUpdateOnSameTable := make(map[int64]bool)
for _, info := range v.TblColPosInfos {
tbl, _ := b.is.TableByID(info.TblID)
if _, ok := tblID2table[info.TblID]; ok {
multiUpdateOnSameTable[info.TblID] = true
}
tblID2table[info.TblID] = tbl
if len(v.PartitionedTable) > 0 {
// The v.PartitionedTable collects the partitioned table.
// Replace the original table with the partitioned table to support partition selection.
// e.g. update t partition (p0, p1), the new values are not belong to the given set p0, p1
// Using the table in v.PartitionedTable returns a proper error, while using the original table can't.
for _, p := range v.PartitionedTable {
if info.TblID == p.Meta().ID {
tblID2table[info.TblID] = p
}
}
}
}
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
selExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), selExec)
base.initCap = chunk.ZeroCapacity
var assignFlag []int
assignFlag, b.err = getAssignFlag(b.ctx, v, selExec.Schema().Len())
if b.err != nil {
return nil
}
// should use the new tblID2table, since the update's schema may have been changed in Execstmt.
b.err = plannercore.CheckUpdateList(assignFlag, v, tblID2table)
if b.err != nil {
return nil
}
updateExec := &UpdateExec{
baseExecutor: base,
OrderedList: v.OrderedList,
allAssignmentsAreConstant: v.AllAssignmentsAreConstant,
virtualAssignmentsOffset: v.VirtualAssignmentsOffset,
multiUpdateOnSameTable: multiUpdateOnSameTable,
tblID2table: tblID2table,
tblColPosInfos: v.TblColPosInfos,
assignFlag: assignFlag,
}
return updateExec
}
func getAssignFlag(ctx sessionctx.Context, v *plannercore.Update, schemaLen int) ([]int, error) {
assignFlag := make([]int, schemaLen)
for i := range assignFlag {
assignFlag[i] = -1
}
for _, assign := range v.OrderedList {
if !ctx.GetSessionVars().AllowWriteRowID && assign.Col.ID == model.ExtraHandleID {
return nil, errors.Errorf("insert, update and replace statements for _tidb_rowid are not supported")
}
tblIdx, found := v.TblColPosInfos.FindTblIdx(assign.Col.Index)
if found {
colIdx := assign.Col.Index
assignFlag[colIdx] = tblIdx
}
}
return assignFlag, nil
}
func (b *executorBuilder) buildDelete(v *plannercore.Delete) Executor {
b.inDeleteStmt = true
tblID2table := make(map[int64]table.Table, len(v.TblColPosInfos))
for _, info := range v.TblColPosInfos {
tblID2table[info.TblID], _ = b.is.TableByID(info.TblID)
}
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
selExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), selExec)
base.initCap = chunk.ZeroCapacity
deleteExec := &DeleteExec{
baseExecutor: base,
tblID2Table: tblID2table,
IsMultiTable: v.IsMultiTable,
tblColPosInfos: v.TblColPosInfos,
}
return deleteExec
}
func (b *executorBuilder) updateForUpdateTS() error {
// GetStmtForUpdateTS will auto update the for update ts if it is necessary
_, err := sessiontxn.GetTxnManager(b.ctx).GetStmtForUpdateTS()
return err
}
func (b *executorBuilder) buildAnalyzeIndexPushdown(task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64, autoAnalyze string) *analyzeTask {
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: autoAnalyze + "analyze index " + task.IndexInfo.Name.O}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectAnalyzeSnapshot", func(val failpoint.Value) {
startTS = uint64(val.(int))
})
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
concurrency: b.ctx.GetSessionVars().IndexSerialScanConcurrency(),
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeIndex,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
job: job,
snapshot: startTS,
}
e := &AnalyzeIndexExec{
baseAnalyzeExec: base,
isCommonHandle: task.TblInfo.IsCommonHandle,
idxInfo: task.IndexInfo,
}
topNSize := new(int32)
*topNSize = int32(opts[ast.AnalyzeOptNumTopN])
statsVersion := new(int32)
*statsVersion = int32(task.StatsVersion)
e.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
NumColumns: int32(len(task.IndexInfo.Columns)),
TopNSize: topNSize,
Version: statsVersion,
SketchSize: maxSketchSize,
}
if e.isCommonHandle && e.idxInfo.Primary {
e.analyzePB.Tp = tipb.AnalyzeType_TypeCommonHandle
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.IdxReq.CmsketchDepth = &depth
e.analyzePB.IdxReq.CmsketchWidth = &width
return &analyzeTask{taskType: idxTask, idxExec: e, job: job}
}
func (b *executorBuilder) buildAnalyzeIndexIncremental(task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64) *analyzeTask {
h := domain.GetDomain(b.ctx).StatsHandle()
statsTbl := h.GetPartitionStats(&model.TableInfo{}, task.TableID.GetStatisticsID())
analyzeTask := b.buildAnalyzeIndexPushdown(task, opts, "")
if statsTbl.Pseudo {
return analyzeTask
}
idx, ok := statsTbl.Indices[task.IndexInfo.ID]
if !ok || idx.Len() == 0 || idx.LastAnalyzePos.IsNull() {
return analyzeTask
}
// If idx got evicted previously, we directly use IndexPushDown task as incremental analyze task will cause inaccuracy
if idx.IsEvicted() {
return analyzeTask
}
failpoint.Inject("assertEvictIndex", func() {
if idx.IsEvicted() {
panic("evicted index shouldn't use analyze incremental task")
}
})
var oldHist *statistics.Histogram
if statistics.IsAnalyzed(idx.Flag) {
exec := analyzeTask.idxExec
if idx.CMSketch != nil {
width, depth := idx.CMSketch.GetWidthAndDepth()
exec.analyzePB.IdxReq.CmsketchWidth = &width
exec.analyzePB.IdxReq.CmsketchDepth = &depth
}
oldHist = idx.Histogram.Copy()
} else {
_, bktID := idx.LessRowCountWithBktIdx(idx.LastAnalyzePos)
if bktID == 0 {
return analyzeTask
}
oldHist = idx.TruncateHistogram(bktID)
}
var oldTopN *statistics.TopN
if analyzeTask.idxExec.analyzePB.IdxReq.GetVersion() >= statistics.Version2 {
oldTopN = idx.TopN.Copy()
oldTopN.RemoveVal(oldHist.Bounds.GetRow(len(oldHist.Buckets)*2 - 1).GetBytes(0))
}
oldHist = oldHist.RemoveUpperBound()
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: "analyze incremental index " + task.IndexInfo.Name.O}
exec := analyzeTask.idxExec
exec.job = job
analyzeTask.taskType = idxIncrementalTask
analyzeTask.idxIncrementalExec = &analyzeIndexIncrementalExec{AnalyzeIndexExec: *exec, oldHist: oldHist, oldCMS: idx.CMSketch, oldTopN: oldTopN}
analyzeTask.job = job
return analyzeTask
}
func (b *executorBuilder) buildAnalyzeSamplingPushdown(task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64, schemaForVirtualColEval *expression.Schema) *analyzeTask {
if task.V2Options != nil {
opts = task.V2Options.FilledOpts
}
availableIdx := make([]*model.IndexInfo, 0, len(task.Indexes))
colGroups := make([]*tipb.AnalyzeColumnGroup, 0, len(task.Indexes))
if len(task.Indexes) > 0 {
for _, idx := range task.Indexes {
availableIdx = append(availableIdx, idx)
colGroup := &tipb.AnalyzeColumnGroup{
ColumnOffsets: make([]int64, 0, len(idx.Columns)),
}
for _, col := range idx.Columns {
colGroup.ColumnOffsets = append(colGroup.ColumnOffsets, int64(col.Offset))
}
colGroups = append(colGroups, colGroup)
}
}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectAnalyzeSnapshot", func(val failpoint.Value) {
startTS = uint64(val.(int))
})
statsHandle := domain.GetDomain(b.ctx).StatsHandle()
count, modifyCount, err := statsHandle.StatsMetaCountAndModifyCount(task.TableID.GetStatisticsID())
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectBaseCount", func(val failpoint.Value) {
count = int64(val.(int))
})
failpoint.Inject("injectBaseModifyCount", func(val failpoint.Value) {
modifyCount = int64(val.(int))
})
sampleRate := new(float64)
if opts[ast.AnalyzeOptNumSamples] == 0 {
*sampleRate = math.Float64frombits(opts[ast.AnalyzeOptSampleRate])
if *sampleRate < 0 {
*sampleRate = b.getAdjustedSampleRate(b.ctx, task)
if task.PartitionName != "" {
sc.AppendNote(errors.Errorf(
"Analyze use auto adjusted sample rate %f for table %s.%s's partition %s",
*sampleRate,
task.DBName,
task.TableName,
task.PartitionName,
))
} else {
sc.AppendNote(errors.Errorf(
"Analyze use auto adjusted sample rate %f for table %s.%s",
*sampleRate,
task.DBName,
task.TableName,
))
}
}
}
job := &statistics.AnalyzeJob{
DBName: task.DBName,
TableName: task.TableName,
PartitionName: task.PartitionName,
}
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
concurrency: b.ctx.GetSessionVars().DistSQLScanConcurrency(),
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeFullSampling,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
job: job,
snapshot: startTS,
}
e := &AnalyzeColumnsExec{
baseAnalyzeExec: base,
tableInfo: task.TblInfo,
colsInfo: task.ColsInfo,
handleCols: task.HandleCols,
indexes: availableIdx,
AnalyzeInfo: task.AnalyzeInfo,
schemaForVirtualColEval: schemaForVirtualColEval,
baseCount: count,
baseModifyCnt: modifyCount,
}
e.analyzePB.ColReq = &tipb.AnalyzeColumnsReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
SampleSize: int64(opts[ast.AnalyzeOptNumSamples]),
SampleRate: sampleRate,
SketchSize: maxSketchSize,
ColumnsInfo: util.ColumnsToProto(task.ColsInfo, task.TblInfo.PKIsHandle),
ColumnGroups: colGroups,
}
if task.TblInfo != nil {
e.analyzePB.ColReq.PrimaryColumnIds = tables.TryGetCommonPkColumnIds(task.TblInfo)
if task.TblInfo.IsCommonHandle {
e.analyzePB.ColReq.PrimaryPrefixColumnIds = tables.PrimaryPrefixColumnIDs(task.TblInfo)
}
}
b.err = plannercore.SetPBColumnsDefaultValue(b.ctx, e.analyzePB.ColReq.ColumnsInfo, task.ColsInfo)
return &analyzeTask{taskType: colTask, colExec: e, job: job}
}
// getAdjustedSampleRate calculate the sample rate by the table size. If we cannot get the table size. We use the 0.001 as the default sample rate.
// From the paper "Random sampling for histogram construction: how much is enough?"'s Corollary 1 to Theorem 5,
// for a table size n, histogram size k, maximum relative error in bin size f, and error probability gamma,
// the minimum random sample size is
//
// r = 4 * k * ln(2*n/gamma) / f^2
//
// If we take f = 0.5, gamma = 0.01, n =1e6, we would got r = 305.82* k.
// Since the there's log function over the table size n, the r grows slowly when the n increases.
// If we take n = 1e12, a 300*k sample still gives <= 0.66 bin size error with probability 0.99.
// So if we don't consider the top-n values, we can keep the sample size at 300*256.
// But we may take some top-n before building the histogram, so we increase the sample a little.
func (b *executorBuilder) getAdjustedSampleRate(sctx sessionctx.Context, task plannercore.AnalyzeColumnsTask) float64 {
statsHandle := domain.GetDomain(sctx).StatsHandle()
defaultRate := 0.001
if statsHandle == nil {
return defaultRate
}
var statsTbl *statistics.Table
tid := task.TableID.GetStatisticsID()
if tid == task.TblInfo.ID {
statsTbl = statsHandle.GetTableStats(task.TblInfo)
} else {
statsTbl = statsHandle.GetPartitionStats(task.TblInfo, tid)
}
approxiCount, hasPD := b.getApproximateTableCountFromStorage(sctx, tid, task)
// If there's no stats meta and no pd, return the default rate.
if statsTbl == nil && !hasPD {
return defaultRate
}
// If the count in stats_meta is still 0 and there's no information from pd side, we scan all rows.
if statsTbl.Count == 0 && !hasPD {
return 1
}
// we have issue https://github.com/pingcap/tidb/issues/29216.
// To do a workaround for this issue, we check the approxiCount from the pd side to do a comparison.
// If the count from the stats_meta is extremely smaller than the approximate count from the pd,
// we think that we meet this issue and use the approximate count to calculate the sample rate.
if float64(statsTbl.Count*5) < approxiCount {
// Confirmed by TiKV side, the experience error rate of the approximate count is about 20%.
// So we increase the number to 150000 to reduce this error rate.
return math.Min(1, 150000/approxiCount)
}
// If we don't go into the above if branch and we still detect the count is zero. Return 1 to prevent the dividing zero.
if statsTbl.Count == 0 {
return 1
}
// We are expected to scan about 100000 rows or so.
// Since there's tiny error rate around the count from the stats meta, we use 110000 to get a little big result
return math.Min(1, config.DefRowsForSampleRate/float64(statsTbl.Count))
}
func (b *executorBuilder) getApproximateTableCountFromStorage(sctx sessionctx.Context, tid int64, task plannercore.AnalyzeColumnsTask) (float64, bool) {
tikvStore, ok := sctx.GetStore().(helper.Storage)
if !ok {
return 0, false
}
regionStats := &helper.PDRegionStats{}
pdHelper := helper.NewHelper(tikvStore)
err := pdHelper.GetPDRegionStats(tid, regionStats, true)
failpoint.Inject("calcSampleRateByStorageCount", func() {
// Force the TiDB thinking that there's PD and the count of region is small.
err = nil
regionStats.Count = 1
// Set a very large approximate count.
regionStats.StorageKeys = 1000000
})
if err != nil {
return 0, false
}
// If this table is not small, we directly use the count from PD,
// since for a small table, it's possible that it's data is in the same region with part of another large table.
// Thus, we use the number of the regions of the table's table KV to decide whether the table is small.
if regionStats.Count > 2 {
return float64(regionStats.StorageKeys), true
}
// Otherwise, we use count(*) to calc it's size, since it's very small, the table data can be filled in no more than 2 regions.
sql := new(strings.Builder)
sqlexec.MustFormatSQL(sql, "select count(*) from %n.%n", task.DBName, task.TableName)
if task.PartitionName != "" {
sqlexec.MustFormatSQL(sql, " partition(%n)", task.PartitionName)
}
ctx := kv.WithInternalSourceType(context.Background(), kv.InternalTxnStats)
rows, _, err := b.ctx.(sqlexec.RestrictedSQLExecutor).ExecRestrictedSQL(ctx, nil, sql.String())
if err != nil {
return 0, false
}
// If the record set is nil, there's something wrong with the execution. The COUNT(*) would always return one row.
if len(rows) == 0 || rows[0].Len() == 0 {
return 0, false
}
return float64(rows[0].GetInt64(0)), true
}
func (b *executorBuilder) buildAnalyzeColumnsPushdown(task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64, autoAnalyze string, schemaForVirtualColEval *expression.Schema) *analyzeTask {
if task.StatsVersion == statistics.Version2 {
return b.buildAnalyzeSamplingPushdown(task, opts, schemaForVirtualColEval)
}
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: autoAnalyze + "analyze columns"}
cols := task.ColsInfo
if hasPkHist(task.HandleCols) {
colInfo := task.TblInfo.Columns[task.HandleCols.GetCol(0).Index]
cols = append([]*model.ColumnInfo{colInfo}, cols...)
} else if task.HandleCols != nil && !task.HandleCols.IsInt() {
cols = make([]*model.ColumnInfo, 0, len(task.ColsInfo)+task.HandleCols.NumCols())
for i := 0; i < task.HandleCols.NumCols(); i++ {
cols = append(cols, task.TblInfo.Columns[task.HandleCols.GetCol(i).Index])
}
cols = append(cols, task.ColsInfo...)
task.ColsInfo = cols
}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectAnalyzeSnapshot", func(val failpoint.Value) {
startTS = uint64(val.(int))
})
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
concurrency: b.ctx.GetSessionVars().DistSQLScanConcurrency(),
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeColumn,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
job: job,
snapshot: startTS,
}
e := &AnalyzeColumnsExec{
baseAnalyzeExec: base,
colsInfo: task.ColsInfo,
handleCols: task.HandleCols,
AnalyzeInfo: task.AnalyzeInfo,
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.ColReq = &tipb.AnalyzeColumnsReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
SampleSize: MaxRegionSampleSize,
SketchSize: maxSketchSize,
ColumnsInfo: util.ColumnsToProto(cols, task.HandleCols != nil && task.HandleCols.IsInt()),
CmsketchDepth: &depth,
CmsketchWidth: &width,
}
if task.TblInfo != nil {
e.analyzePB.ColReq.PrimaryColumnIds = tables.TryGetCommonPkColumnIds(task.TblInfo)
if task.TblInfo.IsCommonHandle {
e.analyzePB.ColReq.PrimaryPrefixColumnIds = tables.PrimaryPrefixColumnIDs(task.TblInfo)
}
}
if task.CommonHandleInfo != nil {
topNSize := new(int32)
*topNSize = int32(opts[ast.AnalyzeOptNumTopN])
statsVersion := new(int32)
*statsVersion = int32(task.StatsVersion)
e.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
NumColumns: int32(len(task.CommonHandleInfo.Columns)),
TopNSize: topNSize,
Version: statsVersion,
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.IdxReq.CmsketchDepth = &depth
e.analyzePB.IdxReq.CmsketchWidth = &width
e.analyzePB.IdxReq.SketchSize = maxSketchSize
e.analyzePB.ColReq.PrimaryColumnIds = tables.TryGetCommonPkColumnIds(task.TblInfo)
e.analyzePB.Tp = tipb.AnalyzeType_TypeMixed
e.commonHandle = task.CommonHandleInfo
}
b.err = plannercore.SetPBColumnsDefaultValue(b.ctx, e.analyzePB.ColReq.ColumnsInfo, cols)
return &analyzeTask{taskType: colTask, colExec: e, job: job}
}
func (b *executorBuilder) buildAnalyzePKIncremental(task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64) *analyzeTask {
h := domain.GetDomain(b.ctx).StatsHandle()
statsTbl := h.GetPartitionStats(&model.TableInfo{}, task.TableID.GetStatisticsID())
analyzeTask := b.buildAnalyzeColumnsPushdown(task, opts, "", nil)
if statsTbl.Pseudo {
return analyzeTask
}
if task.HandleCols == nil || !task.HandleCols.IsInt() {
return analyzeTask
}
col, ok := statsTbl.Columns[task.HandleCols.GetCol(0).ID]
if !ok || col.Len() == 0 || col.LastAnalyzePos.IsNull() {
return analyzeTask
}
var oldHist *statistics.Histogram
if statistics.IsAnalyzed(col.Flag) {
oldHist = col.Histogram.Copy()
} else {
d, err := col.LastAnalyzePos.ConvertTo(b.ctx.GetSessionVars().StmtCtx, col.Tp)
if err != nil {
b.err = err
return nil
}
_, bktID := col.LessRowCountWithBktIdx(d)
if bktID == 0 {
return analyzeTask
}
oldHist = col.TruncateHistogram(bktID)
oldHist.NDV = int64(oldHist.TotalRowCount())
}
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: "analyze incremental primary key"}
exec := analyzeTask.colExec
exec.job = job
analyzeTask.taskType = pkIncrementalTask
analyzeTask.colIncrementalExec = &analyzePKIncrementalExec{AnalyzeColumnsExec: *exec, oldHist: oldHist}
analyzeTask.job = job
return analyzeTask
}
func (b *executorBuilder) buildAnalyzeFastColumn(e *AnalyzeExec, task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64) {
findTask := false
for _, eTask := range e.tasks {
if eTask.fastExec != nil && eTask.fastExec.tableID.Equals(&task.TableID) {
eTask.fastExec.colsInfo = append(eTask.fastExec.colsInfo, task.ColsInfo...)
findTask = true
break
}
}
if !findTask {
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: "fast analyze columns"}
var concurrency int
concurrency, b.err = getBuildStatsConcurrency(e.ctx)
if b.err != nil {
return
}
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return
}
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
opts: opts,
concurrency: concurrency,
job: job,
snapshot: startTS,
}
fastExec := &AnalyzeFastExec{
baseAnalyzeExec: base,
colsInfo: task.ColsInfo,
handleCols: task.HandleCols,
tblInfo: task.TblInfo,
wg: &sync.WaitGroup{},
}
b.err = fastExec.calculateEstimateSampleStep()
if b.err != nil {
return
}
e.tasks = append(e.tasks, &analyzeTask{
taskType: fastTask,
fastExec: fastExec,
job: job,
})
}
}
func (b *executorBuilder) buildAnalyzeFastIndex(e *AnalyzeExec, task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64) {
findTask := false
for _, eTask := range e.tasks {
if eTask.fastExec != nil && eTask.fastExec.tableID.Equals(&task.TableID) {
eTask.fastExec.idxsInfo = append(eTask.fastExec.idxsInfo, task.IndexInfo)
findTask = true
break
}
}
if !findTask {
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: "fast analyze index " + task.IndexInfo.Name.O}
var concurrency int
concurrency, b.err = getBuildStatsConcurrency(e.ctx)
if b.err != nil {
return
}
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return
}
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
opts: opts,
concurrency: concurrency,
job: job,
snapshot: startTS,
}
fastExec := &AnalyzeFastExec{
baseAnalyzeExec: base,
idxsInfo: []*model.IndexInfo{task.IndexInfo},
tblInfo: task.TblInfo,
wg: &sync.WaitGroup{},
}
b.err = fastExec.calculateEstimateSampleStep()
if b.err != nil {
return
}
e.tasks = append(e.tasks, &analyzeTask{
taskType: fastTask,
fastExec: fastExec,
job: job,
})
}
}
func (b *executorBuilder) buildAnalyze(v *plannercore.Analyze) Executor {
e := &AnalyzeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tasks: make([]*analyzeTask, 0, len(v.ColTasks)+len(v.IdxTasks)),
opts: v.Opts,
OptionsMap: v.OptionsMap,
}
enableFastAnalyze := b.ctx.GetSessionVars().EnableFastAnalyze
autoAnalyze := ""
if b.ctx.GetSessionVars().InRestrictedSQL {
autoAnalyze = "auto "
}
for _, task := range v.ColTasks {
if task.Incremental {
e.tasks = append(e.tasks, b.buildAnalyzePKIncremental(task, v.Opts))
} else {
if enableFastAnalyze {
b.buildAnalyzeFastColumn(e, task, v.Opts)
} else {
columns, _, err := expression.ColumnInfos2ColumnsAndNames(b.ctx, model.NewCIStr(task.AnalyzeInfo.DBName), task.TblInfo.Name, task.ColsInfo, task.TblInfo)
if err != nil {
b.err = err
return nil
}
schema := expression.NewSchema(columns...)
e.tasks = append(e.tasks, b.buildAnalyzeColumnsPushdown(task, v.Opts, autoAnalyze, schema))
}
}
if b.err != nil {
return nil
}
}
for _, task := range v.IdxTasks {
if task.Incremental {
e.tasks = append(e.tasks, b.buildAnalyzeIndexIncremental(task, v.Opts))
} else {
if enableFastAnalyze {
b.buildAnalyzeFastIndex(e, task, v.Opts)
} else {
e.tasks = append(e.tasks, b.buildAnalyzeIndexPushdown(task, v.Opts, autoAnalyze))
}
}
if b.err != nil {
return nil
}
}
return e
}
func constructDistExec(sctx sessionctx.Context, plans []plannercore.PhysicalPlan) ([]*tipb.Executor, error) {
executors := make([]*tipb.Executor, 0, len(plans))
for _, p := range plans {
execPB, err := p.ToPB(sctx, kv.TiKV)
if err != nil {
return nil, err
}
executors = append(executors, execPB)
}
return executors, nil
}
// markChildrenUsedCols compares each child with the output schema, and mark
// each column of the child is used by output or not.
func markChildrenUsedCols(outputSchema *expression.Schema, childSchema ...*expression.Schema) (childrenUsed [][]bool) {
for _, child := range childSchema {
used := expression.GetUsedList(outputSchema.Columns, child)
childrenUsed = append(childrenUsed, used)
}
return
}
func constructDistExecForTiFlash(sctx sessionctx.Context, p plannercore.PhysicalPlan) ([]*tipb.Executor, error) {
execPB, err := p.ToPB(sctx, kv.TiFlash)
return []*tipb.Executor{execPB}, err
}
func constructDAGReq(ctx sessionctx.Context, plans []plannercore.PhysicalPlan, storeType kv.StoreType) (dagReq *tipb.DAGRequest, err error) {
dagReq = &tipb.DAGRequest{}
dagReq.TimeZoneName, dagReq.TimeZoneOffset = timeutil.Zone(ctx.GetSessionVars().Location())
sc := ctx.GetSessionVars().StmtCtx
if sc.RuntimeStatsColl != nil {
collExec := true
dagReq.CollectExecutionSummaries = &collExec
}
dagReq.Flags = sc.PushDownFlags()
if storeType == kv.TiFlash {
var executors []*tipb.Executor
executors, err = constructDistExecForTiFlash(ctx, plans[0])
dagReq.RootExecutor = executors[0]
} else {
dagReq.Executors, err = constructDistExec(ctx, plans)
}
distsql.SetEncodeType(ctx, dagReq)
return dagReq, err
}
func (b *executorBuilder) corColInDistPlan(plans []plannercore.PhysicalPlan) bool {
for _, p := range plans {
x, ok := p.(*plannercore.PhysicalSelection)
if !ok {
continue
}
for _, cond := range x.Conditions {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
}
return false
}
// corColInAccess checks whether there's correlated column in access conditions.
func (b *executorBuilder) corColInAccess(p plannercore.PhysicalPlan) bool {
var access []expression.Expression
switch x := p.(type) {
case *plannercore.PhysicalTableScan:
access = x.AccessCondition
case *plannercore.PhysicalIndexScan:
access = x.AccessCondition
}
for _, cond := range access {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
return false
}
func (b *executorBuilder) newDataReaderBuilder(p plannercore.PhysicalPlan) (*dataReaderBuilder, error) {
ts, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
builderForDataReader := *b
builderForDataReader.forDataReaderBuilder = true
builderForDataReader.dataReaderTS = ts
return &dataReaderBuilder{
Plan: p,
executorBuilder: &builderForDataReader,
}, nil
}
func (b *executorBuilder) buildIndexLookUpJoin(v *plannercore.PhysicalIndexJoin) Executor {
outerExec := b.build(v.Children()[1-v.InnerChildIdx])
if b.err != nil {
return nil
}
outerTypes := retTypes(outerExec)
innerPlan := v.Children()[v.InnerChildIdx]
innerTypes := make([]*types.FieldType, innerPlan.Schema().Len())
for i, col := range innerPlan.Schema().Columns {
innerTypes[i] = col.RetType.Clone()
// The `innerTypes` would be called for `Datum.ConvertTo` when converting the columns from outer table
// to build hash map or construct lookup keys. So we need to modify its flen otherwise there would be
// truncate error. See issue https://github.com/pingcap/tidb/issues/21232 for example.
if innerTypes[i].EvalType() == types.ETString {
innerTypes[i].SetFlen(types.UnspecifiedLength)
}
}
// Use the probe table's collation.
for i, col := range v.OuterHashKeys {
outerTypes[col.Index] = outerTypes[col.Index].Clone()
outerTypes[col.Index].SetCollate(innerTypes[v.InnerHashKeys[i].Index].GetCollate())
outerTypes[col.Index].SetFlag(col.RetType.GetFlag())
}
// We should use JoinKey to construct the type information using by hashing, instead of using the child's schema directly.
// When a hybrid type column is hashed multiple times, we need to distinguish what field types are used.
// For example, the condition `enum = int and enum = string`, we should use ETInt to hash the first column,
// and use ETString to hash the second column, although they may be the same column.
innerHashTypes := make([]*types.FieldType, len(v.InnerHashKeys))
outerHashTypes := make([]*types.FieldType, len(v.OuterHashKeys))
for i, col := range v.InnerHashKeys {
innerHashTypes[i] = innerTypes[col.Index].Clone()
innerHashTypes[i].SetFlag(col.RetType.GetFlag())
}
for i, col := range v.OuterHashKeys {
outerHashTypes[i] = outerTypes[col.Index].Clone()
outerHashTypes[i].SetFlag(col.RetType.GetFlag())
}
var (
outerFilter []expression.Expression
leftTypes, rightTypes []*types.FieldType
)
if v.InnerChildIdx == 0 {
leftTypes, rightTypes = innerTypes, outerTypes
outerFilter = v.RightConditions
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
leftTypes, rightTypes = outerTypes, innerTypes
outerFilter = v.LeftConditions
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, len(innerTypes))
}
hasPrefixCol := false
for _, l := range v.IdxColLens {
if l != types.UnspecifiedLength {
hasPrefixCol = true
break
}
}
readerBuilder, err := b.newDataReaderBuilder(innerPlan)
if err != nil {
b.err = err
return nil
}
e := &IndexLookUpJoin{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec),
outerCtx: outerCtx{
rowTypes: outerTypes,
hashTypes: outerHashTypes,
filter: outerFilter,
},
innerCtx: innerCtx{
readerBuilder: readerBuilder,
rowTypes: innerTypes,
hashTypes: innerHashTypes,
colLens: v.IdxColLens,
hasPrefixCol: hasPrefixCol,
},
workerWg: new(sync.WaitGroup),
isOuterJoin: v.JoinType.IsOuterJoin(),
indexRanges: v.Ranges,
keyOff2IdxOff: v.KeyOff2IdxOff,
lastColHelper: v.CompareFilters,
finished: &atomic.Value{},
}
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
e.joiner = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, leftTypes, rightTypes, childrenUsedSchema)
outerKeyCols := make([]int, len(v.OuterJoinKeys))
for i := 0; i < len(v.OuterJoinKeys); i++ {
outerKeyCols[i] = v.OuterJoinKeys[i].Index
}
innerKeyCols := make([]int, len(v.InnerJoinKeys))
innerKeyColIDs := make([]int64, len(v.InnerJoinKeys))
keyCollators := make([]collate.Collator, 0, len(v.InnerJoinKeys))
for i := 0; i < len(v.InnerJoinKeys); i++ {
innerKeyCols[i] = v.InnerJoinKeys[i].Index
innerKeyColIDs[i] = v.InnerJoinKeys[i].ID
keyCollators = append(keyCollators, collate.GetCollator(v.InnerJoinKeys[i].RetType.GetCollate()))
}
e.outerCtx.keyCols = outerKeyCols
e.innerCtx.keyCols = innerKeyCols
e.innerCtx.keyColIDs = innerKeyColIDs
e.innerCtx.keyCollators = keyCollators
outerHashCols, innerHashCols := make([]int, len(v.OuterHashKeys)), make([]int, len(v.InnerHashKeys))
hashCollators := make([]collate.Collator, 0, len(v.InnerHashKeys))
for i := 0; i < len(v.OuterHashKeys); i++ {
outerHashCols[i] = v.OuterHashKeys[i].Index
}
for i := 0; i < len(v.InnerHashKeys); i++ {
innerHashCols[i] = v.InnerHashKeys[i].Index
hashCollators = append(hashCollators, collate.GetCollator(v.InnerHashKeys[i].RetType.GetCollate()))
}
e.outerCtx.hashCols = outerHashCols
e.innerCtx.hashCols = innerHashCols
e.innerCtx.hashCollators = hashCollators
e.joinResult = newFirstChunk(e)
executorCounterIndexLookUpJoin.Inc()
return e
}
func (b *executorBuilder) buildIndexLookUpMergeJoin(v *plannercore.PhysicalIndexMergeJoin) Executor {
outerExec := b.build(v.Children()[1-v.InnerChildIdx])
if b.err != nil {
return nil
}
outerTypes := retTypes(outerExec)
innerPlan := v.Children()[v.InnerChildIdx]
innerTypes := make([]*types.FieldType, innerPlan.Schema().Len())
for i, col := range innerPlan.Schema().Columns {
innerTypes[i] = col.RetType.Clone()
// The `innerTypes` would be called for `Datum.ConvertTo` when converting the columns from outer table
// to build hash map or construct lookup keys. So we need to modify its flen otherwise there would be
// truncate error. See issue https://github.com/pingcap/tidb/issues/21232 for example.
if innerTypes[i].EvalType() == types.ETString {
innerTypes[i].SetFlen(types.UnspecifiedLength)
}
}
var (
outerFilter []expression.Expression
leftTypes, rightTypes []*types.FieldType
)
if v.InnerChildIdx == 0 {
leftTypes, rightTypes = innerTypes, outerTypes
outerFilter = v.RightConditions
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
leftTypes, rightTypes = outerTypes, innerTypes
outerFilter = v.LeftConditions
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, len(innerTypes))
}
outerKeyCols := make([]int, len(v.OuterJoinKeys))
for i := 0; i < len(v.OuterJoinKeys); i++ {
outerKeyCols[i] = v.OuterJoinKeys[i].Index
}
innerKeyCols := make([]int, len(v.InnerJoinKeys))
keyCollators := make([]collate.Collator, 0, len(v.InnerJoinKeys))
for i := 0; i < len(v.InnerJoinKeys); i++ {
innerKeyCols[i] = v.InnerJoinKeys[i].Index
keyCollators = append(keyCollators, collate.GetCollator(v.InnerJoinKeys[i].RetType.GetCollate()))
}
executorCounterIndexLookUpJoin.Inc()
readerBuilder, err := b.newDataReaderBuilder(innerPlan)
if err != nil {
b.err = err
return nil
}
e := &IndexLookUpMergeJoin{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec),
outerMergeCtx: outerMergeCtx{
rowTypes: outerTypes,
filter: outerFilter,
joinKeys: v.OuterJoinKeys,
keyCols: outerKeyCols,
needOuterSort: v.NeedOuterSort,
compareFuncs: v.OuterCompareFuncs,
},
innerMergeCtx: innerMergeCtx{
readerBuilder: readerBuilder,
rowTypes: innerTypes,
joinKeys: v.InnerJoinKeys,
keyCols: innerKeyCols,
keyCollators: keyCollators,
compareFuncs: v.CompareFuncs,
colLens: v.IdxColLens,
desc: v.Desc,
keyOff2KeyOffOrderByIdx: v.KeyOff2KeyOffOrderByIdx,
},
workerWg: new(sync.WaitGroup),
isOuterJoin: v.JoinType.IsOuterJoin(),
indexRanges: v.Ranges,
keyOff2IdxOff: v.KeyOff2IdxOff,
lastColHelper: v.CompareFilters,
}
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
joiners := make([]joiner, e.ctx.GetSessionVars().IndexLookupJoinConcurrency())
for i := 0; i < len(joiners); i++ {
joiners[i] = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, leftTypes, rightTypes, childrenUsedSchema)
}
e.joiners = joiners
return e
}
func (b *executorBuilder) buildIndexNestedLoopHashJoin(v *plannercore.PhysicalIndexHashJoin) Executor {
e := b.buildIndexLookUpJoin(&(v.PhysicalIndexJoin)).(*IndexLookUpJoin)
idxHash := &IndexNestedLoopHashJoin{
IndexLookUpJoin: *e,
keepOuterOrder: v.KeepOuterOrder,
}
concurrency := e.ctx.GetSessionVars().IndexLookupJoinConcurrency()
idxHash.joiners = make([]joiner, concurrency)
for i := 0; i < concurrency; i++ {
idxHash.joiners[i] = e.joiner.Clone()
}
return idxHash
}
// containsLimit tests if the execs contains Limit because we do not know whether `Limit` has consumed all of its' source,
// so the feedback may not be accurate.
func containsLimit(execs []*tipb.Executor) bool {
for _, exec := range execs {
if exec.Limit != nil {
return true
}
}
return false
}
func buildNoRangeTableReader(b *executorBuilder, v *plannercore.PhysicalTableReader) (*TableReaderExecutor, error) {
tablePlans := v.TablePlans
if v.StoreType == kv.TiFlash {
tablePlans = []plannercore.PhysicalPlan{v.GetTablePlan()}
}
dagReq, err := constructDAGReq(b.ctx, tablePlans, v.StoreType)
if err != nil {
return nil, err
}
ts, err := v.GetTableScan()
if err != nil {
return nil, err
}
if err = b.validCanReadTemporaryOrCacheTable(ts.Table); err != nil {
return nil, err
}
tbl, _ := b.is.TableByID(ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
paging := b.ctx.GetSessionVars().EnablePaging
e := &TableReaderExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPB: dagReq,
startTS: startTS,
txnScope: b.txnScope,
readReplicaScope: b.readReplicaScope,
isStaleness: b.isStaleness,
netDataSize: v.GetNetDataSize(),
table: tbl,
keepOrder: ts.KeepOrder,
desc: ts.Desc,
columns: ts.Columns,
paging: paging,
corColInFilter: b.corColInDistPlan(v.TablePlans),
corColInAccess: b.corColInAccess(v.TablePlans[0]),
plans: v.TablePlans,
tablePlan: v.GetTablePlan(),
storeType: v.StoreType,
batchCop: v.ReadReqType == plannercore.BatchCop,
}
e.buildVirtualColumnInfo()
if containsLimit(dagReq.Executors) {
e.feedback = statistics.NewQueryFeedback(0, nil, 0, ts.Desc)
} else {
e.feedback = statistics.NewQueryFeedback(getFeedbackStatsTableID(e.ctx, tbl), ts.Hist, int64(ts.StatsCount()), ts.Desc)
}
collect := statistics.CollectFeedback(b.ctx.GetSessionVars().StmtCtx, e.feedback, len(ts.Ranges))
// Do not collect the feedback when the table is the partition table.
if collect && tbl.Meta().Partition != nil {
collect = false
}
if !collect {
e.feedback.Invalidate()
}
e.dagPB.CollectRangeCounts = &collect
if v.StoreType == kv.TiDB && b.ctx.GetSessionVars().User != nil {
// User info is used to do privilege check. It is only used in TiDB cluster memory table.
e.dagPB.User = &tipb.UserIdentity{
UserName: b.ctx.GetSessionVars().User.Username,
UserHost: b.ctx.GetSessionVars().User.Hostname,
}
}
for i := range v.Schema().Columns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(i))
}
return e, nil
}
func (b *executorBuilder) buildMPPGather(v *plannercore.PhysicalTableReader) Executor {
startTs, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
gather := &MPPGather{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
originalPlan: v.GetTablePlan(),
startTS: startTs,
}
return gather
}
// buildTableReader builds a table reader executor. It first build a no range table reader,
// and then update it ranges from table scan plan.
func (b *executorBuilder) buildTableReader(v *plannercore.PhysicalTableReader) Executor {
if v.StoreType != kv.TiKV && b.isStaleness {
b.err = errors.New("stale requests require tikv backend")
return nil
}
failpoint.Inject("checkUseMPP", func(val failpoint.Value) {
if !b.ctx.GetSessionVars().InRestrictedSQL && val.(bool) != useMPPExecution(b.ctx, v) {
if val.(bool) {
b.err = errors.New("expect mpp but not used")
} else {
b.err = errors.New("don't expect mpp but we used it")
}
failpoint.Return(nil)
}
})
if useMPPExecution(b.ctx, v) {
return b.buildMPPGather(v)
}
ts, err := v.GetTableScan()
if err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeTableReader(b, v)
if err != nil {
b.err = err
return nil
}
if err = b.validCanReadTemporaryOrCacheTable(ts.Table); err != nil {
b.err = err
return nil
}
if ret.table.Meta().TempTableType != model.TempTableNone {
ret.dummy = true
}
ret.ranges = ts.Ranges
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
// When isPartition is set, it means the union rewriting is done, so a partition reader is preferred.
if ok, _ := ts.IsPartition(); ok {
return ret
}
pi := ts.Table.GetPartitionInfo()
if pi == nil {
return ret
}
tmp, _ := b.is.TableByID(ts.Table.ID)
tbl := tmp.(table.PartitionedTable)
partitions, err := partitionPruning(b.ctx, tbl, v.PartitionInfo.PruningConds, v.PartitionInfo.PartitionNames, v.PartitionInfo.Columns, v.PartitionInfo.ColumnNames)
if err != nil {
b.err = err
return nil
}
if v.StoreType == kv.TiFlash {
sctx.IsTiFlash.Store(true)
}
if len(partitions) == 0 {
return &TableDualExec{baseExecutor: *ret.base()}
}
// Sort the partition is necessary to make the final multiple partition key ranges ordered.
slices.SortFunc(partitions, func(i, j table.PhysicalTable) bool {
return i.GetPhysicalID() < j.GetPhysicalID()
})
ret.kvRangeBuilder = kvRangeBuilderFromRangeAndPartition{
sctx: b.ctx,
partitions: partitions,
}
return ret
}
func buildIndexRangeForEachPartition(ctx sessionctx.Context, usedPartitions []table.PhysicalTable, contentPos []int64,
lookUpContent []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (map[int64][]*ranger.Range, error) {
contentBucket := make(map[int64][]*indexJoinLookUpContent)
for _, p := range usedPartitions {
contentBucket[p.GetPhysicalID()] = make([]*indexJoinLookUpContent, 0, 8)
}
for i, pos := range contentPos {
if _, ok := contentBucket[pos]; ok {
contentBucket[pos] = append(contentBucket[pos], lookUpContent[i])
}
}
nextRange := make(map[int64][]*ranger.Range)
for _, p := range usedPartitions {
ranges, err := buildRangesForIndexJoin(ctx, contentBucket[p.GetPhysicalID()], indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
nextRange[p.GetPhysicalID()] = ranges
}
return nextRange, nil
}
func keyColumnsIncludeAllPartitionColumns(keyColumns []int, pe *tables.PartitionExpr) bool {
tmp := make(map[int]struct{}, len(keyColumns))
for _, offset := range keyColumns {
tmp[offset] = struct{}{}
}
for _, offset := range pe.ColumnOffset {
if _, ok := tmp[offset]; !ok {
return false
}
}
return true
}
func (builder *dataReaderBuilder) prunePartitionForInnerExecutor(tbl table.Table, schema *expression.Schema, partitionInfo *plannercore.PartitionInfo,
lookUpContent []*indexJoinLookUpContent) (usedPartition []table.PhysicalTable, canPrune bool, contentPos []int64, err error) {
partitionTbl := tbl.(table.PartitionedTable)
// In index join, this is called by multiple goroutines simultaneously, but partitionPruning is not thread-safe.
// Use once.Do to avoid DATA RACE here.
// TODO: condition based pruning can be do in advance.
condPruneResult, err := builder.partitionPruning(partitionTbl, partitionInfo.PruningConds, partitionInfo.PartitionNames, partitionInfo.Columns, partitionInfo.ColumnNames)
if err != nil {
return nil, false, nil, err
}
// check whether can runtime prune.
type partitionExpr interface {
PartitionExpr() (*tables.PartitionExpr, error)
}
pe, err := tbl.(partitionExpr).PartitionExpr()
if err != nil {
return nil, false, nil, err
}
// recalculate key column offsets
if len(lookUpContent) == 0 {
return nil, false, nil, nil
}
if lookUpContent[0].keyColIDs == nil {
return nil, false, nil, plannercore.ErrInternal.GenWithStack("cannot get column IDs when dynamic pruning")
}
keyColOffsets := make([]int, len(lookUpContent[0].keyColIDs))
for i, colID := range lookUpContent[0].keyColIDs {
offset := -1
for j, col := range partitionTbl.Cols() {
if colID == col.ID {
offset = j
break
}
}
if offset == -1 {
return nil, false, nil, plannercore.ErrInternal.GenWithStack("invalid column offset when dynamic pruning")
}
keyColOffsets[i] = offset
}
offsetMap := make(map[int]bool)
for _, offset := range keyColOffsets {
offsetMap[offset] = true
}
for _, offset := range pe.ColumnOffset {
if _, ok := offsetMap[offset]; !ok {
return condPruneResult, false, nil, nil
}
}
locateKey := make([]types.Datum, len(partitionTbl.Cols()))
partitions := make(map[int64]table.PhysicalTable)
contentPos = make([]int64, len(lookUpContent))
for idx, content := range lookUpContent {
for i, date := range content.keys {
locateKey[keyColOffsets[i]] = date
}
p, err := partitionTbl.GetPartitionByRow(builder.ctx, locateKey)
if err != nil {
return nil, false, nil, err
}
if _, ok := partitions[p.GetPhysicalID()]; !ok {
partitions[p.GetPhysicalID()] = p
}
contentPos[idx] = p.GetPhysicalID()
}
usedPartition = make([]table.PhysicalTable, 0, len(partitions))
for _, p := range condPruneResult {
if _, ok := partitions[p.GetPhysicalID()]; ok {
usedPartition = append(usedPartition, p)
}
}
// To make the final key ranges involving multiple partitions ordered.
slices.SortFunc(usedPartition, func(i, j table.PhysicalTable) bool {
return i.GetPhysicalID() < j.GetPhysicalID()
})
return usedPartition, true, contentPos, nil
}
func buildNoRangeIndexReader(b *executorBuilder, v *plannercore.PhysicalIndexReader) (*IndexReaderExecutor, error) {
dagReq, err := constructDAGReq(b.ctx, v.IndexPlans, kv.TiKV)
if err != nil {
return nil, err
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
tbl, _ := b.is.TableByID(is.Table.ID)
isPartition, physicalTableID := is.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
} else {
physicalTableID = is.Table.ID
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
paging := b.ctx.GetSessionVars().EnablePaging
e := &IndexReaderExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPB: dagReq,
startTS: startTS,
txnScope: b.txnScope,
readReplicaScope: b.readReplicaScope,
isStaleness: b.isStaleness,
netDataSize: v.GetNetDataSize(),
physicalTableID: physicalTableID,
table: tbl,
index: is.Index,
keepOrder: is.KeepOrder,
desc: is.Desc,
columns: is.Columns,
paging: paging,
corColInFilter: b.corColInDistPlan(v.IndexPlans),
corColInAccess: b.corColInAccess(v.IndexPlans[0]),
idxCols: is.IdxCols,
colLens: is.IdxColLens,
plans: v.IndexPlans,
outputColumns: v.OutputColumns,
}
if containsLimit(dagReq.Executors) {
e.feedback = statistics.NewQueryFeedback(0, nil, 0, is.Desc)
} else {
tblID := e.physicalTableID
if b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
tblID = e.table.Meta().ID
}
e.feedback = statistics.NewQueryFeedback(tblID, is.Hist, int64(is.StatsCount()), is.Desc)
}
collect := statistics.CollectFeedback(b.ctx.GetSessionVars().StmtCtx, e.feedback, len(is.Ranges))
// Do not collect the feedback when the table is the partition table.
if collect && tbl.Meta().Partition != nil {
collect = false
}
if !collect {
e.feedback.Invalidate()
}
e.dagPB.CollectRangeCounts = &collect
for _, col := range v.OutputColumns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(col.Index))
}
return e, nil
}
func (b *executorBuilder) buildIndexReader(v *plannercore.PhysicalIndexReader) Executor {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
if err := b.validCanReadTemporaryOrCacheTable(is.Table); err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeIndexReader(b, v)
if err != nil {
b.err = err
return nil
}
if ret.table.Meta().TempTableType != model.TempTableNone {
ret.dummy = true
}
ret.ranges = is.Ranges
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
// When isPartition is set, it means the union rewriting is done, so a partition reader is preferred.
if ok, _ := is.IsPartition(); ok {
return ret
}
pi := is.Table.GetPartitionInfo()
if pi == nil {
return ret
}
if is.Index.Global {
return ret
}
tmp, _ := b.is.TableByID(is.Table.ID)
tbl := tmp.(table.PartitionedTable)
partitions, err := partitionPruning(b.ctx, tbl, v.PartitionInfo.PruningConds, v.PartitionInfo.PartitionNames, v.PartitionInfo.Columns, v.PartitionInfo.ColumnNames)
if err != nil {
b.err = err
return nil
}
ret.partitions = partitions
return ret
}
func buildTableReq(b *executorBuilder, schemaLen int, plans []plannercore.PhysicalPlan) (dagReq *tipb.DAGRequest, val table.Table, err error) {
tableReq, err := constructDAGReq(b.ctx, plans, kv.TiKV)
if err != nil {
return nil, nil, err
}
for i := 0; i < schemaLen; i++ {
tableReq.OutputOffsets = append(tableReq.OutputOffsets, uint32(i))
}
ts := plans[0].(*plannercore.PhysicalTableScan)
tbl, _ := b.is.TableByID(ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
return tableReq, tbl, err
}
func buildIndexReq(ctx sessionctx.Context, schemaLen, handleLen int, plans []plannercore.PhysicalPlan) (dagReq *tipb.DAGRequest, err error) {
indexReq, err := constructDAGReq(ctx, plans, kv.TiKV)
if err != nil {
return nil, err
}
indexReq.OutputOffsets = []uint32{}
for i := 0; i < handleLen; i++ {
indexReq.OutputOffsets = append(indexReq.OutputOffsets, uint32(schemaLen+i))
}
if len(indexReq.OutputOffsets) == 0 {
indexReq.OutputOffsets = []uint32{uint32(schemaLen)}
}
return indexReq, err
}
func buildNoRangeIndexLookUpReader(b *executorBuilder, v *plannercore.PhysicalIndexLookUpReader) (*IndexLookUpExecutor, error) {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
var handleLen int
if len(v.CommonHandleCols) != 0 {
handleLen = len(v.CommonHandleCols)
} else {
handleLen = 1
}
if is.Index.Global {
// Should output pid col.
handleLen++
}
indexReq, err := buildIndexReq(b.ctx, len(is.Index.Columns), handleLen, v.IndexPlans)
if err != nil {
return nil, err
}
indexPaging := false
if v.Paging {
indexPaging = true
}
tableReq, tbl, err := buildTableReq(b, v.Schema().Len(), v.TablePlans)
if err != nil {
return nil, err
}
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
readerBuilder, err := b.newDataReaderBuilder(nil)
if err != nil {
return nil, err
}
e := &IndexLookUpExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPB: indexReq,
startTS: startTS,
table: tbl,
index: is.Index,
keepOrder: is.KeepOrder,
desc: is.Desc,
tableRequest: tableReq,
columns: ts.Columns,
indexPaging: indexPaging,
dataReaderBuilder: readerBuilder,
corColInIdxSide: b.corColInDistPlan(v.IndexPlans),
corColInTblSide: b.corColInDistPlan(v.TablePlans),
corColInAccess: b.corColInAccess(v.IndexPlans[0]),
idxCols: is.IdxCols,
colLens: is.IdxColLens,
idxPlans: v.IndexPlans,
tblPlans: v.TablePlans,
PushedLimit: v.PushedLimit,
idxNetDataSize: v.GetAvgTableRowSize(),
avgRowSize: v.GetAvgTableRowSize(),
}
if containsLimit(indexReq.Executors) {
e.feedback = statistics.NewQueryFeedback(0, nil, 0, is.Desc)
} else {
e.feedback = statistics.NewQueryFeedback(getFeedbackStatsTableID(e.ctx, tbl), is.Hist, int64(is.StatsCount()), is.Desc)
}
// Do not collect the feedback for table request.
collectTable := false
e.tableRequest.CollectRangeCounts = &collectTable
collectIndex := statistics.CollectFeedback(b.ctx.GetSessionVars().StmtCtx, e.feedback, len(is.Ranges))
// Do not collect the feedback when the table is the partition table.
if collectIndex && tbl.Meta().GetPartitionInfo() != nil {
collectIndex = false
}
if !collectIndex {
e.feedback.Invalidate()
}
e.dagPB.CollectRangeCounts = &collectIndex
if v.ExtraHandleCol != nil {
e.handleIdx = append(e.handleIdx, v.ExtraHandleCol.Index)
e.handleCols = []*expression.Column{v.ExtraHandleCol}
} else {
for _, handleCol := range v.CommonHandleCols {
e.handleIdx = append(e.handleIdx, handleCol.Index)
}
e.handleCols = v.CommonHandleCols
e.primaryKeyIndex = tables.FindPrimaryIndex(tbl.Meta())
}
return e, nil
}
func (b *executorBuilder) buildIndexLookUpReader(v *plannercore.PhysicalIndexLookUpReader) Executor {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
if err := b.validCanReadTemporaryOrCacheTable(is.Table); err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeIndexLookUpReader(b, v)
if err != nil {
b.err = err
return nil
}
if ret.table.Meta().TempTableType != model.TempTableNone {
ret.dummy = true
}
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
ret.ranges = is.Ranges
executorCounterIndexLookUpExecutor.Inc()
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
if pi := is.Table.GetPartitionInfo(); pi == nil {
return ret
}
if is.Index.Global {
return ret
}
if ok, _ := is.IsPartition(); ok {
// Already pruned when translated to logical union.
return ret
}
tmp, _ := b.is.TableByID(is.Table.ID)
tbl := tmp.(table.PartitionedTable)
partitions, err := partitionPruning(b.ctx, tbl, v.PartitionInfo.PruningConds, v.PartitionInfo.PartitionNames, v.PartitionInfo.Columns, v.PartitionInfo.ColumnNames)
if err != nil {
b.err = err
return nil
}
ret.partitionTableMode = true
ret.prunedPartitions = partitions
return ret
}
func buildNoRangeIndexMergeReader(b *executorBuilder, v *plannercore.PhysicalIndexMergeReader) (*IndexMergeReaderExecutor, error) {
partialPlanCount := len(v.PartialPlans)
partialReqs := make([]*tipb.DAGRequest, 0, partialPlanCount)
partialDataSizes := make([]float64, 0, partialPlanCount)
indexes := make([]*model.IndexInfo, 0, partialPlanCount)
descs := make([]bool, 0, partialPlanCount)
feedbacks := make([]*statistics.QueryFeedback, 0, partialPlanCount)
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
isCorColInPartialFilters := make([]bool, 0, partialPlanCount)
isCorColInPartialAccess := make([]bool, 0, partialPlanCount)
for i := 0; i < partialPlanCount; i++ {
var tempReq *tipb.DAGRequest
var err error
feedback := statistics.NewQueryFeedback(0, nil, 0, ts.Desc)
feedback.Invalidate()
feedbacks = append(feedbacks, feedback)
if is, ok := v.PartialPlans[i][0].(*plannercore.PhysicalIndexScan); ok {
tempReq, err = buildIndexReq(b.ctx, len(is.Index.Columns), ts.HandleCols.NumCols(), v.PartialPlans[i])
descs = append(descs, is.Desc)
indexes = append(indexes, is.Index)
} else {
ts := v.PartialPlans[i][0].(*plannercore.PhysicalTableScan)
tempReq, _, err = buildTableReq(b, len(ts.Columns), v.PartialPlans[i])
descs = append(descs, ts.Desc)
indexes = append(indexes, nil)
}
if err != nil {
return nil, err
}
collect := false
tempReq.CollectRangeCounts = &collect
partialReqs = append(partialReqs, tempReq)
isCorColInPartialFilters = append(isCorColInPartialFilters, b.corColInDistPlan(v.PartialPlans[i]))
isCorColInPartialAccess = append(isCorColInPartialAccess, b.corColInAccess(v.PartialPlans[i][0]))
partialDataSizes = append(partialDataSizes, v.GetPartialReaderNetDataSize(v.PartialPlans[i][0]))
}
tableReq, tblInfo, err := buildTableReq(b, v.Schema().Len(), v.TablePlans)
isCorColInTableFilter := b.corColInDistPlan(v.TablePlans)
if err != nil {
return nil, err
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
readerBuilder, err := b.newDataReaderBuilder(nil)
if err != nil {
return nil, err
}
paging := b.ctx.GetSessionVars().EnablePaging
e := &IndexMergeReaderExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPBs: partialReqs,
startTS: startTS,
table: tblInfo,
indexes: indexes,
descs: descs,
tableRequest: tableReq,
columns: ts.Columns,
partialPlans: v.PartialPlans,
tblPlans: v.TablePlans,
partialNetDataSizes: partialDataSizes,
dataAvgRowSize: v.GetAvgTableRowSize(),
dataReaderBuilder: readerBuilder,
feedbacks: feedbacks,
paging: paging,
handleCols: ts.HandleCols,
isCorColInPartialFilters: isCorColInPartialFilters,
isCorColInTableFilter: isCorColInTableFilter,
isCorColInPartialAccess: isCorColInPartialAccess,
}
collectTable := false
e.tableRequest.CollectRangeCounts = &collectTable
return e, nil
}
func (b *executorBuilder) buildIndexMergeReader(v *plannercore.PhysicalIndexMergeReader) Executor {
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
if err := b.validCanReadTemporaryOrCacheTable(ts.Table); err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeIndexMergeReader(b, v)
if err != nil {
b.err = err
return nil
}
ret.ranges = make([][]*ranger.Range, 0, len(v.PartialPlans))
sctx := b.ctx.GetSessionVars().StmtCtx
for i := 0; i < len(v.PartialPlans); i++ {
if is, ok := v.PartialPlans[i][0].(*plannercore.PhysicalIndexScan); ok {
ret.ranges = append(ret.ranges, is.Ranges)
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
} else {
ret.ranges = append(ret.ranges, v.PartialPlans[i][0].(*plannercore.PhysicalTableScan).Ranges)
if ret.table.Meta().IsCommonHandle {
tblInfo := ret.table.Meta()
sctx.IndexNames = append(sctx.IndexNames, tblInfo.Name.O+":"+tables.FindPrimaryIndex(tblInfo).Name.O)
}
}
}
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
executorCounterIndexMergeReaderExecutor.Inc()
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
if pi := ts.Table.GetPartitionInfo(); pi == nil {
return ret
}
tmp, _ := b.is.TableByID(ts.Table.ID)
partitions, err := partitionPruning(b.ctx, tmp.(table.PartitionedTable), v.PartitionInfo.PruningConds, v.PartitionInfo.PartitionNames, v.PartitionInfo.Columns, v.PartitionInfo.ColumnNames)
if err != nil {
b.err = err
return nil
}
ret.partitionTableMode, ret.prunedPartitions = true, partitions
return ret
}
// dataReaderBuilder build an executor.
// The executor can be used to read data in the ranges which are constructed by datums.
// Differences from executorBuilder:
// 1. dataReaderBuilder calculate data range from argument, rather than plan.
// 2. the result executor is already opened.
type dataReaderBuilder struct {
plannercore.Plan
*executorBuilder
selectResultHook // for testing
once struct {
sync.Once
condPruneResult []table.PhysicalTable
err error
}
}
type mockPhysicalIndexReader struct {
plannercore.PhysicalPlan
e Executor
}
// MemoryUsage return the memory usage of mockPhysicalIndexReader
func (p *mockPhysicalIndexReader) MemoryUsage() (sum int64) {
return // mock operator for testing only
}
func (builder *dataReaderBuilder) buildExecutorForIndexJoin(ctx context.Context, lookUpContents []*indexJoinLookUpContent,
IndexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
return builder.buildExecutorForIndexJoinInternal(ctx, builder.Plan, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
}
func (builder *dataReaderBuilder) buildExecutorForIndexJoinInternal(ctx context.Context, plan plannercore.Plan, lookUpContents []*indexJoinLookUpContent,
IndexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
switch v := plan.(type) {
case *plannercore.PhysicalTableReader:
return builder.buildTableReaderForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
case *plannercore.PhysicalIndexReader:
return builder.buildIndexReaderForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
case *plannercore.PhysicalIndexLookUpReader:
return builder.buildIndexLookUpReaderForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
case *plannercore.PhysicalUnionScan:
return builder.buildUnionScanForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
// The inner child of IndexJoin might be Projection when a combination of the following conditions is true:
// 1. The inner child fetch data using indexLookupReader
// 2. PK is not handle
// 3. The inner child needs to keep order
// In this case, an extra column tidb_rowid will be appended in the output result of IndexLookupReader(see copTask.doubleReadNeedProj).
// Then we need a Projection upon IndexLookupReader to prune the redundant column.
case *plannercore.PhysicalProjection:
return builder.buildProjectionForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
// Need to support physical selection because after PR 16389, TiDB will push down all the expr supported by TiKV or TiFlash
// in predicate push down stage, so if there is an expr which only supported by TiFlash, a physical selection will be added after index read
case *plannercore.PhysicalSelection:
childExec, err := builder.buildExecutorForIndexJoinInternal(ctx, v.Children()[0], lookUpContents, IndexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
exec := &SelectionExec{
baseExecutor: newBaseExecutor(builder.ctx, v.Schema(), v.ID(), childExec),
filters: v.Conditions,
}
err = exec.open(ctx)
return exec, err
case *mockPhysicalIndexReader:
return v.e, nil
}
return nil, errors.New("Wrong plan type for dataReaderBuilder")
}
func (builder *dataReaderBuilder) buildUnionScanForIndexJoin(ctx context.Context, v *plannercore.PhysicalUnionScan,
values []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int,
cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
childBuilder, err := builder.newDataReaderBuilder(v.Children()[0])
if err != nil {
return nil, err
}
reader, err := childBuilder.buildExecutorForIndexJoin(ctx, values, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
ret := builder.buildUnionScanFromReader(reader, v)
if us, ok := ret.(*UnionScanExec); ok {
err = us.open(ctx)
}
return ret, err
}
func (builder *dataReaderBuilder) buildTableReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalTableReader,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int,
cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
e, err := buildNoRangeTableReader(builder.executorBuilder, v)
if !canReorderHandles {
// `canReorderHandles` is set to false only in IndexMergeJoin. IndexMergeJoin will trigger a dead loop problem
// when enabling paging(tidb/issues/35831). But IndexMergeJoin is not visible to the user and is deprecated
// for now. Thus, we disable paging here.
e.paging = false
}
if err != nil {
return nil, err
}
tbInfo := e.table.Meta()
if tbInfo.GetPartitionInfo() == nil || !builder.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
if v.IsCommonHandle {
kvRanges, err := buildKvRangesForIndexJoin(e.ctx, getPhysicalTableID(e.table), -1, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
if err != nil {
return nil, err
}
return builder.buildTableReaderFromKvRanges(ctx, e, kvRanges)
}
handles, _ := dedupHandles(lookUpContents)
return builder.buildTableReaderFromHandles(ctx, e, handles, canReorderHandles)
}
tbl, _ := builder.is.TableByID(tbInfo.ID)
pt := tbl.(table.PartitionedTable)
pe, err := tbl.(interface {
PartitionExpr() (*tables.PartitionExpr, error)
}).PartitionExpr()
if err != nil {
return nil, err
}
partitionInfo := &v.PartitionInfo
usedPartitionList, err := builder.partitionPruning(pt, partitionInfo.PruningConds, partitionInfo.PartitionNames, partitionInfo.Columns, partitionInfo.ColumnNames)
if err != nil {
return nil, err
}
usedPartitions := make(map[int64]table.PhysicalTable, len(usedPartitionList))
for _, p := range usedPartitionList {
usedPartitions[p.GetPhysicalID()] = p
}
var kvRanges []kv.KeyRange
if v.IsCommonHandle {
if len(lookUpContents) > 0 && keyColumnsIncludeAllPartitionColumns(lookUpContents[0].keyCols, pe) {
locateKey := make([]types.Datum, e.Schema().Len())
kvRanges = make([]kv.KeyRange, 0, len(lookUpContents))
// lookUpContentsByPID groups lookUpContents by pid(partition) so that kv ranges for same partition can be merged.
lookUpContentsByPID := make(map[int64][]*indexJoinLookUpContent)
for _, content := range lookUpContents {
for i, date := range content.keys {
locateKey[content.keyCols[i]] = date
}
p, err := pt.GetPartitionByRow(e.ctx, locateKey)
if err != nil {
return nil, err
}
pid := p.GetPhysicalID()
if _, ok := usedPartitions[pid]; !ok {
continue
}
lookUpContentsByPID[pid] = append(lookUpContentsByPID[pid], content)
}
for pid, contents := range lookUpContentsByPID {
// buildKvRanges for each partition.
tmp, err := buildKvRangesForIndexJoin(e.ctx, pid, -1, contents, indexRanges, keyOff2IdxOff, cwc, nil, interruptSignal)
if err != nil {
return nil, err
}
kvRanges = append(kvRanges, tmp...)
}
} else {
kvRanges = make([]kv.KeyRange, 0, len(usedPartitions)*len(lookUpContents))
for _, p := range usedPartitionList {
tmp, err := buildKvRangesForIndexJoin(e.ctx, p.GetPhysicalID(), -1, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
if err != nil {
return nil, err
}
kvRanges = append(tmp, kvRanges...)
}
}
// The key ranges should be ordered.
slices.SortFunc(kvRanges, func(i, j kv.KeyRange) bool {
return bytes.Compare(i.StartKey, j.StartKey) < 0
})
return builder.buildTableReaderFromKvRanges(ctx, e, kvRanges)
}
handles, lookUpContents := dedupHandles(lookUpContents)
if len(lookUpContents) > 0 && keyColumnsIncludeAllPartitionColumns(lookUpContents[0].keyCols, pe) {
locateKey := make([]types.Datum, e.Schema().Len())
kvRanges = make([]kv.KeyRange, 0, len(lookUpContents))
for _, content := range lookUpContents {
for i, date := range content.keys {
locateKey[content.keyCols[i]] = date
}
p, err := pt.GetPartitionByRow(e.ctx, locateKey)
if err != nil {
return nil, err
}
pid := p.GetPhysicalID()
if _, ok := usedPartitions[pid]; !ok {
continue
}
handle := kv.IntHandle(content.keys[0].GetInt64())
tmp := distsql.TableHandlesToKVRanges(pid, []kv.Handle{handle})
kvRanges = append(kvRanges, tmp...)
}
} else {
for _, p := range usedPartitionList {
tmp := distsql.TableHandlesToKVRanges(p.GetPhysicalID(), handles)
kvRanges = append(kvRanges, tmp...)
}
}
// The key ranges should be ordered.
slices.SortFunc(kvRanges, func(i, j kv.KeyRange) bool {
return bytes.Compare(i.StartKey, j.StartKey) < 0
})
return builder.buildTableReaderFromKvRanges(ctx, e, kvRanges)
}
func dedupHandles(lookUpContents []*indexJoinLookUpContent) ([]kv.Handle, []*indexJoinLookUpContent) {
handles := make([]kv.Handle, 0, len(lookUpContents))
validLookUpContents := make([]*indexJoinLookUpContent, 0, len(lookUpContents))
for _, content := range lookUpContents {
isValidHandle := true
handle := kv.IntHandle(content.keys[0].GetInt64())
for _, key := range content.keys {
if handle.IntValue() != key.GetInt64() {
isValidHandle = false
break
}
}
if isValidHandle {
handles = append(handles, handle)
validLookUpContents = append(validLookUpContents, content)
}
}
return handles, validLookUpContents
}
type kvRangeBuilderFromRangeAndPartition struct {
sctx sessionctx.Context
partitions []table.PhysicalTable
}
func (h kvRangeBuilderFromRangeAndPartition) buildKeyRangeSeparately(ranges []*ranger.Range) ([]int64, [][]kv.KeyRange, error) {
ret := make([][]kv.KeyRange, 0, len(h.partitions))
pids := make([]int64, 0, len(h.partitions))
for _, p := range h.partitions {
pid := p.GetPhysicalID()
meta := p.Meta()
kvRange, err := distsql.TableHandleRangesToKVRanges(h.sctx.GetSessionVars().StmtCtx, []int64{pid}, meta != nil && meta.IsCommonHandle, ranges, nil)
if err != nil {
return nil, nil, err
}
pids = append(pids, pid)
ret = append(ret, kvRange)
}
return pids, ret, nil
}
func (h kvRangeBuilderFromRangeAndPartition) buildKeyRange(ranges []*ranger.Range) ([]kv.KeyRange, error) {
//nolint: prealloc
var ret []kv.KeyRange
for _, p := range h.partitions {
pid := p.GetPhysicalID()
meta := p.Meta()
kvRange, err := distsql.TableHandleRangesToKVRanges(h.sctx.GetSessionVars().StmtCtx, []int64{pid}, meta != nil && meta.IsCommonHandle, ranges, nil)
if err != nil {
return nil, err
}
ret = append(ret, kvRange...)
}
return ret, nil
}
// newClosestReadAdjuster let the request be sent to closest replica(within the same zone)
// if response size exceeds certain threshold.
func newClosestReadAdjuster(ctx sessionctx.Context, req *kv.Request, netDataSize float64) kv.CoprRequestAdjuster {
if req.ReplicaRead != kv.ReplicaReadClosestAdaptive {
return nil
}
return func(req *kv.Request, copTaskCount int) bool {
// copTaskCount is the number of coprocessor requests
if int64(netDataSize/float64(copTaskCount)) >= ctx.GetSessionVars().ReplicaClosestReadThreshold {
req.MatchStoreLabels = append(req.MatchStoreLabels, &metapb.StoreLabel{
Key: placement.DCLabelKey,
Value: config.GetTxnScopeFromConfig(),
})
return true
}
// reset to read from leader when the data size is small.
req.ReplicaRead = kv.ReplicaReadLeader
return false
}
}
func (builder *dataReaderBuilder) buildTableReaderBase(ctx context.Context, e *TableReaderExecutor, reqBuilderWithRange distsql.RequestBuilder) (*TableReaderExecutor, error) {
startTS, err := builder.getSnapshotTS()
if err != nil {
return nil, err
}
kvReq, err := reqBuilderWithRange.
SetDAGRequest(e.dagPB).
SetStartTS(startTS).
SetDesc(e.desc).
SetKeepOrder(e.keepOrder).
SetTxnScope(e.txnScope).
SetReadReplicaScope(e.readReplicaScope).
SetIsStaleness(e.isStaleness).
SetFromSessionVars(e.ctx.GetSessionVars()).
SetFromInfoSchema(e.ctx.GetInfoSchema()).
SetClosestReplicaReadAdjuster(newClosestReadAdjuster(e.ctx, &reqBuilderWithRange.Request, e.netDataSize)).
SetPaging(e.paging).
Build()
if err != nil {
return nil, err
}
e.kvRanges = append(e.kvRanges, kvReq.KeyRanges...)
e.resultHandler = &tableResultHandler{}
result, err := builder.SelectResult(ctx, builder.ctx, kvReq, retTypes(e), e.feedback, getPhysicalPlanIDs(e.plans), e.id)
if err != nil {
return nil, err
}
e.resultHandler.open(nil, result)
return e, nil
}
func (builder *dataReaderBuilder) buildTableReaderFromHandles(ctx context.Context, e *TableReaderExecutor, handles []kv.Handle, canReorderHandles bool) (*TableReaderExecutor, error) {
if canReorderHandles {
slices.SortFunc(handles, func(i, j kv.Handle) bool {
return i.Compare(j) < 0
})
}
var b distsql.RequestBuilder
if len(handles) > 0 {
if _, ok := handles[0].(kv.PartitionHandle); ok {
b.SetPartitionsAndHandles(handles)
} else {
b.SetTableHandles(getPhysicalTableID(e.table), handles)
}
}
return builder.buildTableReaderBase(ctx, e, b)
}
func (builder *dataReaderBuilder) buildTableReaderFromKvRanges(ctx context.Context, e *TableReaderExecutor, ranges []kv.KeyRange) (Executor, error) {
var b distsql.RequestBuilder
b.SetKeyRanges(ranges)
return builder.buildTableReaderBase(ctx, e, b)
}
func (builder *dataReaderBuilder) buildIndexReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalIndexReader,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memoryTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
e, err := buildNoRangeIndexReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
tbInfo := e.table.Meta()
if tbInfo.GetPartitionInfo() == nil || !builder.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
kvRanges, err := buildKvRangesForIndexJoin(e.ctx, e.physicalTableID, e.index.ID, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memoryTracker, interruptSignal)
if err != nil {
return nil, err
}
err = e.open(ctx, kvRanges)
return e, err
}
tbl, _ := builder.executorBuilder.is.TableByID(tbInfo.ID)
usedPartition, canPrune, contentPos, err := builder.prunePartitionForInnerExecutor(tbl, e.Schema(), &v.PartitionInfo, lookUpContents)
if err != nil {
return nil, err
}
if len(usedPartition) != 0 {
if canPrune {
rangeMap, err := buildIndexRangeForEachPartition(e.ctx, usedPartition, contentPos, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
e.partitions = usedPartition
e.ranges = indexRanges
e.partRangeMap = rangeMap
} else {
e.partitions = usedPartition
if e.ranges, err = buildRangesForIndexJoin(e.ctx, lookUpContents, indexRanges, keyOff2IdxOff, cwc); err != nil {
return nil, err
}
}
if err := e.Open(ctx); err != nil {
return nil, err
}
return e, nil
}
ret := &TableDualExec{baseExecutor: *e.base()}
err = ret.Open(ctx)
return ret, err
}
func (builder *dataReaderBuilder) buildIndexLookUpReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalIndexLookUpReader,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
e, err := buildNoRangeIndexLookUpReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
tbInfo := e.table.Meta()
if tbInfo.GetPartitionInfo() == nil || !builder.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
e.kvRanges, err = buildKvRangesForIndexJoin(e.ctx, getPhysicalTableID(e.table), e.index.ID, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
if err != nil {
return nil, err
}
err = e.open(ctx)
return e, err
}
tbl, _ := builder.executorBuilder.is.TableByID(tbInfo.ID)
usedPartition, canPrune, contentPos, err := builder.prunePartitionForInnerExecutor(tbl, e.Schema(), &v.PartitionInfo, lookUpContents)
if err != nil {
return nil, err
}
if len(usedPartition) != 0 {
if canPrune {
rangeMap, err := buildIndexRangeForEachPartition(e.ctx, usedPartition, contentPos, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
e.prunedPartitions = usedPartition
e.ranges = indexRanges
e.partitionRangeMap = rangeMap
} else {
e.prunedPartitions = usedPartition
e.ranges, err = buildRangesForIndexJoin(e.ctx, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
}
e.partitionTableMode = true
if err := e.Open(ctx); err != nil {
return nil, err
}
return e, err
}
ret := &TableDualExec{baseExecutor: *e.base()}
err = ret.Open(ctx)
return ret, err
}
func (builder *dataReaderBuilder) buildProjectionForIndexJoin(ctx context.Context, v *plannercore.PhysicalProjection,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memTracker *memory.Tracker, interruptSignal *atomic.Value) (Executor, error) {
var (
childExec Executor
err error
)
switch op := v.Children()[0].(type) {
case *plannercore.PhysicalIndexLookUpReader:
if childExec, err = builder.buildIndexLookUpReaderForIndexJoin(ctx, op, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal); err != nil {
return nil, err
}
case *plannercore.PhysicalTableReader:
if childExec, err = builder.buildTableReaderForIndexJoin(ctx, op, lookUpContents, indexRanges, keyOff2IdxOff, cwc, true, memTracker, interruptSignal); err != nil {
return nil, err
}
default:
return nil, errors.Errorf("inner child of Projection should be IndexLookupReader/TableReader, but got %T", v.Children()[0])
}
e := &ProjectionExec{
baseExecutor: newBaseExecutor(builder.ctx, v.Schema(), v.ID(), childExec),
numWorkers: int64(builder.ctx.GetSessionVars().ProjectionConcurrency()),
evaluatorSuit: expression.NewEvaluatorSuite(v.Exprs, v.AvoidColumnEvaluator),
calculateNoDelay: v.CalculateNoDelay,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(builder.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
err = e.open(ctx)
return e, err
}
// buildRangesForIndexJoin builds kv ranges for index join when the inner plan is index scan plan.
func buildRangesForIndexJoin(ctx sessionctx.Context, lookUpContents []*indexJoinLookUpContent,
ranges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) ([]*ranger.Range, error) {
retRanges := make([]*ranger.Range, 0, len(ranges)*len(lookUpContents))
lastPos := len(ranges[0].LowVal) - 1
tmpDatumRanges := make([]*ranger.Range, 0, len(lookUpContents))
for _, content := range lookUpContents {
for _, ran := range ranges {
for keyOff, idxOff := range keyOff2IdxOff {
ran.LowVal[idxOff] = content.keys[keyOff]
ran.HighVal[idxOff] = content.keys[keyOff]
}
}
if cwc == nil {
// A deep copy is need here because the old []*range.Range is overwriten
for _, ran := range ranges {
retRanges = append(retRanges, ran.Clone())
}
continue
}
nextColRanges, err := cwc.BuildRangesByRow(ctx, content.row)
if err != nil {
return nil, err
}
for _, nextColRan := range nextColRanges {
for _, ran := range ranges {
ran.LowVal[lastPos] = nextColRan.LowVal[0]
ran.HighVal[lastPos] = nextColRan.HighVal[0]
ran.LowExclude = nextColRan.LowExclude
ran.HighExclude = nextColRan.HighExclude
ran.Collators = nextColRan.Collators
tmpDatumRanges = append(tmpDatumRanges, ran.Clone())
}
}
}
if cwc == nil {
return retRanges, nil
}
return ranger.UnionRanges(ctx, tmpDatumRanges, true)
}
// buildKvRangesForIndexJoin builds kv ranges for index join when the inner plan is index scan plan.
func buildKvRangesForIndexJoin(ctx sessionctx.Context, tableID, indexID int64, lookUpContents []*indexJoinLookUpContent,
ranges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memTracker *memory.Tracker, interruptSignal *atomic.Value) (_ []kv.KeyRange, err error) {
kvRanges := make([]kv.KeyRange, 0, len(ranges)*len(lookUpContents))
lastPos := len(ranges[0].LowVal) - 1
sc := ctx.GetSessionVars().StmtCtx
tmpDatumRanges := make([]*ranger.Range, 0, len(lookUpContents))
for _, content := range lookUpContents {
for _, ran := range ranges {
for keyOff, idxOff := range keyOff2IdxOff {
ran.LowVal[idxOff] = content.keys[keyOff]
ran.HighVal[idxOff] = content.keys[keyOff]
}
}
if cwc == nil {
// Index id is -1 means it's a common handle.
var tmpKvRanges []kv.KeyRange
var err error
if indexID == -1 {
tmpKvRanges, err = distsql.CommonHandleRangesToKVRanges(sc, []int64{tableID}, ranges)
} else {
tmpKvRanges, err = distsql.IndexRangesToKVRangesWithInterruptSignal(sc, tableID, indexID, ranges, nil, memTracker, interruptSignal)
}
if err != nil {
return nil, err
}
kvRanges = append(kvRanges, tmpKvRanges...)
continue
}
nextColRanges, err := cwc.BuildRangesByRow(ctx, content.row)
if err != nil {
return nil, err
}
for _, nextColRan := range nextColRanges {
for _, ran := range ranges {
ran.LowVal[lastPos] = nextColRan.LowVal[0]
ran.HighVal[lastPos] = nextColRan.HighVal[0]
ran.LowExclude = nextColRan.LowExclude
ran.HighExclude = nextColRan.HighExclude
ran.Collators = nextColRan.Collators
tmpDatumRanges = append(tmpDatumRanges, ran.Clone())
}
}
}
if len(kvRanges) != 0 && memTracker != nil {
memTracker.Consume(int64(2 * cap(kvRanges[0].StartKey) * len(kvRanges)))
}
if len(tmpDatumRanges) != 0 && memTracker != nil {
memTracker.Consume(2 * int64(len(tmpDatumRanges)) * types.EstimatedMemUsage(tmpDatumRanges[0].LowVal, len(tmpDatumRanges)))
}
if cwc == nil {
slices.SortFunc(kvRanges, func(i, j kv.KeyRange) bool {
return bytes.Compare(i.StartKey, j.StartKey) < 0
})
return kvRanges, nil
}
tmpDatumRanges, err = ranger.UnionRanges(ctx, tmpDatumRanges, true)
if err != nil {
return nil, err
}
// Index id is -1 means it's a common handle.
if indexID == -1 {
return distsql.CommonHandleRangesToKVRanges(ctx.GetSessionVars().StmtCtx, []int64{tableID}, tmpDatumRanges)
}
return distsql.IndexRangesToKVRangesWithInterruptSignal(ctx.GetSessionVars().StmtCtx, tableID, indexID, tmpDatumRanges, nil, memTracker, interruptSignal)
}
func (b *executorBuilder) buildWindow(v *plannercore.PhysicalWindow) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
groupByItems := make([]expression.Expression, 0, len(v.PartitionBy))
for _, item := range v.PartitionBy {
groupByItems = append(groupByItems, item.Col)
}
orderByCols := make([]*expression.Column, 0, len(v.OrderBy))
for _, item := range v.OrderBy {
orderByCols = append(orderByCols, item.Col)
}
windowFuncs := make([]aggfuncs.AggFunc, 0, len(v.WindowFuncDescs))
partialResults := make([]aggfuncs.PartialResult, 0, len(v.WindowFuncDescs))
resultColIdx := v.Schema().Len() - len(v.WindowFuncDescs)
for _, desc := range v.WindowFuncDescs {
aggDesc, err := aggregation.NewAggFuncDescForWindowFunc(b.ctx, desc, false)
if err != nil {
b.err = err
return nil
}
agg := aggfuncs.BuildWindowFunctions(b.ctx, aggDesc, resultColIdx, orderByCols)
windowFuncs = append(windowFuncs, agg)
partialResult, _ := agg.AllocPartialResult()
partialResults = append(partialResults, partialResult)
resultColIdx++
}
if b.ctx.GetSessionVars().EnablePipelinedWindowExec {
exec := &PipelinedWindowExec{
baseExecutor: base,
groupChecker: newVecGroupChecker(b.ctx, groupByItems),
numWindowFuncs: len(v.WindowFuncDescs),
}
exec.windowFuncs = windowFuncs
exec.partialResults = partialResults
if v.Frame == nil {
exec.start = &plannercore.FrameBound{
Type: ast.Preceding,
UnBounded: true,
}
exec.end = &plannercore.FrameBound{
Type: ast.Following,
UnBounded: true,
}
} else {
exec.start = v.Frame.Start
exec.end = v.Frame.End
if v.Frame.Type == ast.Ranges {
cmpResult := int64(-1)
if len(v.OrderBy) > 0 && v.OrderBy[0].Desc {
cmpResult = 1
}
exec.orderByCols = orderByCols
exec.expectedCmpResult = cmpResult
exec.isRangeFrame = true
}
}
return exec
}
var processor windowProcessor
if v.Frame == nil {
processor = &aggWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
}
} else if v.Frame.Type == ast.Rows {
processor = &rowFrameWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
start: v.Frame.Start,
end: v.Frame.End,
}
} else {
cmpResult := int64(-1)
if len(v.OrderBy) > 0 && v.OrderBy[0].Desc {
cmpResult = 1
}
processor = &rangeFrameWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
start: v.Frame.Start,
end: v.Frame.End,
orderByCols: orderByCols,
expectedCmpResult: cmpResult,
}
}
return &WindowExec{baseExecutor: base,
processor: processor,
groupChecker: newVecGroupChecker(b.ctx, groupByItems),
numWindowFuncs: len(v.WindowFuncDescs),
}
}
func (b *executorBuilder) buildShuffle(v *plannercore.PhysicalShuffle) *ShuffleExec {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
shuffle := &ShuffleExec{
baseExecutor: base,
concurrency: v.Concurrency,
}
// 1. initialize the splitters
splitters := make([]partitionSplitter, len(v.ByItemArrays))
switch v.SplitterType {
case plannercore.PartitionHashSplitterType:
for i, byItems := range v.ByItemArrays {
splitters[i] = buildPartitionHashSplitter(shuffle.concurrency, byItems)
}
case plannercore.PartitionRangeSplitterType:
for i, byItems := range v.ByItemArrays {
splitters[i] = buildPartitionRangeSplitter(b.ctx, shuffle.concurrency, byItems)
}
default:
panic("Not implemented. Should not reach here.")
}
shuffle.splitters = splitters
// 2. initialize the data sources (build the data sources from physical plan to executors)
shuffle.dataSources = make([]Executor, len(v.DataSources))
for i, dataSource := range v.DataSources {
shuffle.dataSources[i] = b.build(dataSource)
if b.err != nil {
return nil
}
}
// 3. initialize the workers
head := v.Children()[0]
// A `PhysicalShuffleReceiverStub` for every worker have the same `DataSource` but different `Receiver`.
// We preallocate `PhysicalShuffleReceiverStub`s here and reuse them below.
stubs := make([]*plannercore.PhysicalShuffleReceiverStub, 0, len(v.DataSources))
for _, dataSource := range v.DataSources {
stub := plannercore.PhysicalShuffleReceiverStub{
DataSource: dataSource,
}.Init(b.ctx, dataSource.Stats(), dataSource.SelectBlockOffset(), nil)
stub.SetSchema(dataSource.Schema())
stubs = append(stubs, stub)
}
shuffle.workers = make([]*shuffleWorker, shuffle.concurrency)
for i := range shuffle.workers {
receivers := make([]*shuffleReceiver, len(v.DataSources))
for j, dataSource := range v.DataSources {
receivers[j] = &shuffleReceiver{
baseExecutor: newBaseExecutor(b.ctx, dataSource.Schema(), stubs[j].ID()),
}
}
w := &shuffleWorker{
receivers: receivers,
}
for j := range v.DataSources {
stub := stubs[j]
stub.Receiver = (unsafe.Pointer)(receivers[j])
v.Tails[j].SetChildren(stub)
}
w.childExec = b.build(head)
if b.err != nil {
return nil
}
shuffle.workers[i] = w
}
return shuffle
}
func (b *executorBuilder) buildShuffleReceiverStub(v *plannercore.PhysicalShuffleReceiverStub) *shuffleReceiver {
return (*shuffleReceiver)(v.Receiver)
}
func (b *executorBuilder) buildSQLBindExec(v *plannercore.SQLBindPlan) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
e := &SQLBindExec{
baseExecutor: base,
sqlBindOp: v.SQLBindOp,
normdOrigSQL: v.NormdOrigSQL,
bindSQL: v.BindSQL,
charset: v.Charset,
collation: v.Collation,
db: v.Db,
isGlobal: v.IsGlobal,
bindAst: v.BindStmt,
newStatus: v.NewStatus,
}
return e
}
// NewRowDecoder creates a chunk decoder for new row format row value decode.
func NewRowDecoder(ctx sessionctx.Context, schema *expression.Schema, tbl *model.TableInfo) *rowcodec.ChunkDecoder {
getColInfoByID := func(tbl *model.TableInfo, colID int64) *model.ColumnInfo {
for _, col := range tbl.Columns {
if col.ID == colID {
return col
}
}
return nil
}
var pkCols []int64
reqCols := make([]rowcodec.ColInfo, len(schema.Columns))
for i := range schema.Columns {
idx, col := i, schema.Columns[i]
isPK := (tbl.PKIsHandle && mysql.HasPriKeyFlag(col.RetType.GetFlag())) || col.ID == model.ExtraHandleID
if isPK {
pkCols = append(pkCols, col.ID)
}
isGeneratedCol := false
if col.VirtualExpr != nil {
isGeneratedCol = true
}
reqCols[idx] = rowcodec.ColInfo{
ID: col.ID,
VirtualGenCol: isGeneratedCol,
Ft: col.RetType,
}
}
if len(pkCols) == 0 {
pkCols = tables.TryGetCommonPkColumnIds(tbl)
if len(pkCols) == 0 {
pkCols = []int64{-1}
}
}
defVal := func(i int, chk *chunk.Chunk) error {
ci := getColInfoByID(tbl, reqCols[i].ID)
d, err := table.GetColOriginDefaultValue(ctx, ci)
if err != nil {
return err
}
chk.AppendDatum(i, &d)
return nil
}
return rowcodec.NewChunkDecoder(reqCols, pkCols, defVal, ctx.GetSessionVars().Location())
}
func (b *executorBuilder) buildBatchPointGet(plan *plannercore.BatchPointGetPlan) Executor {
var err error
if err = b.validCanReadTemporaryOrCacheTable(plan.TblInfo); err != nil {
b.err = err
return nil
}
if plan.Lock && !b.inSelectLockStmt {
b.inSelectLockStmt = true
defer func() {
b.inSelectLockStmt = false
}()
}
decoder := NewRowDecoder(b.ctx, plan.Schema(), plan.TblInfo)
e := &BatchPointGetExec{
baseExecutor: newBaseExecutor(b.ctx, plan.Schema(), plan.ID()),
tblInfo: plan.TblInfo,
idxInfo: plan.IndexInfo,
rowDecoder: decoder,
keepOrder: plan.KeepOrder,
desc: plan.Desc,
lock: plan.Lock,
waitTime: plan.LockWaitTime,
partExpr: plan.PartitionExpr,
partPos: plan.PartitionColPos,
singlePart: plan.SinglePart,
partTblID: plan.PartTblID,
columns: plan.Columns,
}
e.snapshot, err = b.getSnapshot()
if err != nil {
b.err = err
return nil
}
if e.ctx.GetSessionVars().IsReplicaReadClosestAdaptive() {
e.snapshot.SetOption(kv.ReplicaReadAdjuster, newReplicaReadAdjuster(e.ctx, plan.GetAvgRowSize()))
}
if e.runtimeStats != nil {
snapshotStats := &txnsnapshot.SnapshotRuntimeStats{}
e.stats = &runtimeStatsWithSnapshot{
SnapshotRuntimeStats: snapshotStats,
}
e.snapshot.SetOption(kv.CollectRuntimeStats, snapshotStats)
b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl.RegisterStats(e.id, e.stats)
}
if plan.IndexInfo != nil {
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, plan.TblInfo.Name.O+":"+plan.IndexInfo.Name.O)
}
failpoint.Inject("assertBatchPointReplicaOption", func(val failpoint.Value) {
assertScope := val.(string)
if e.ctx.GetSessionVars().GetReplicaRead().IsClosestRead() && assertScope != b.readReplicaScope {
panic("batch point get replica option fail")
}
})
snapshotTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
if plan.TblInfo.TableCacheStatusType == model.TableCacheStatusEnable {
if cacheTable := b.getCacheTable(plan.TblInfo, snapshotTS); cacheTable != nil {
e.snapshot = cacheTableSnapshot{e.snapshot, cacheTable}
}
}
if plan.TblInfo.TempTableType != model.TempTableNone {
// Temporary table should not do any lock operations
e.lock = false
e.waitTime = 0
}
if e.lock {
b.hasLock = true
}
var capacity int
if plan.IndexInfo != nil && !isCommonHandleRead(plan.TblInfo, plan.IndexInfo) {
e.idxVals = plan.IndexValues
capacity = len(e.idxVals)
} else {
// `SELECT a FROM t WHERE a IN (1, 1, 2, 1, 2)` should not return duplicated rows
handles := make([]kv.Handle, 0, len(plan.Handles))
dedup := kv.NewHandleMap()
if plan.IndexInfo == nil {
for _, handle := range plan.Handles {
if _, found := dedup.Get(handle); found {
continue
}
dedup.Set(handle, true)
handles = append(handles, handle)
}
} else {
for _, value := range plan.IndexValues {
if datumsContainNull(value) {
continue
}
handleBytes, err := EncodeUniqueIndexValuesForKey(e.ctx, e.tblInfo, plan.IndexInfo, value)
if err != nil {
if kv.ErrNotExist.Equal(err) {
continue
}
b.err = err
return nil
}
handle, err := kv.NewCommonHandle(handleBytes)
if err != nil {
b.err = err
return nil
}
if _, found := dedup.Get(handle); found {
continue
}
dedup.Set(handle, true)
handles = append(handles, handle)
}
}
e.handles = handles
capacity = len(e.handles)
}
e.base().initCap = capacity
e.base().maxChunkSize = capacity
e.buildVirtualColumnInfo()
return e
}
func newReplicaReadAdjuster(ctx sessionctx.Context, avgRowSize float64) txnkv.ReplicaReadAdjuster {
return func(count int) (tikv.StoreSelectorOption, clientkv.ReplicaReadType) {
if int64(avgRowSize*float64(count)) >= ctx.GetSessionVars().ReplicaClosestReadThreshold {
return tikv.WithMatchLabels([]*metapb.StoreLabel{
{
Key: placement.DCLabelKey,
Value: config.GetTxnScopeFromConfig(),
},
}), clientkv.ReplicaReadMixed
}
// fallback to read from leader if the request is small
return nil, clientkv.ReplicaReadLeader
}
}
func isCommonHandleRead(tbl *model.TableInfo, idx *model.IndexInfo) bool {
return tbl.IsCommonHandle && idx.Primary
}
func getPhysicalTableID(t table.Table) int64 {
if p, ok := t.(table.PhysicalTable); ok {
return p.GetPhysicalID()
}
return t.Meta().ID
}
func getFeedbackStatsTableID(ctx sessionctx.Context, t table.Table) int64 {
if p, ok := t.(table.PhysicalTable); ok && !ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return p.GetPhysicalID()
}
return t.Meta().ID
}
func (b *executorBuilder) buildAdminShowTelemetry(v *plannercore.AdminShowTelemetry) Executor {
return &AdminShowTelemetryExec{baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID())}
}
func (b *executorBuilder) buildAdminResetTelemetryID(v *plannercore.AdminResetTelemetryID) Executor {
return &AdminResetTelemetryIDExec{baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID())}
}
func (builder *dataReaderBuilder) partitionPruning(tbl table.PartitionedTable, conds []expression.Expression, partitionNames []model.CIStr,
columns []*expression.Column, columnNames types.NameSlice) ([]table.PhysicalTable, error) {
builder.once.Do(func() {
condPruneResult, err := partitionPruning(builder.executorBuilder.ctx, tbl, conds, partitionNames, columns, columnNames)
builder.once.condPruneResult = condPruneResult
builder.once.err = err
})
return builder.once.condPruneResult, builder.once.err
}
func partitionPruning(ctx sessionctx.Context, tbl table.PartitionedTable, conds []expression.Expression, partitionNames []model.CIStr,
columns []*expression.Column, columnNames types.NameSlice) ([]table.PhysicalTable, error) {
idxArr, err := plannercore.PartitionPruning(ctx, tbl, conds, partitionNames, columns, columnNames)
if err != nil {
return nil, err
}
pi := tbl.Meta().GetPartitionInfo()
var ret []table.PhysicalTable
if fullRangePartition(idxArr) {
ret = make([]table.PhysicalTable, 0, len(pi.Definitions))
for _, def := range pi.Definitions {
p := tbl.GetPartition(def.ID)
ret = append(ret, p)
}
} else {
ret = make([]table.PhysicalTable, 0, len(idxArr))
for _, idx := range idxArr {
pid := pi.Definitions[idx].ID
p := tbl.GetPartition(pid)
ret = append(ret, p)
}
}
return ret, nil
}
func fullRangePartition(idxArr []int) bool {
return len(idxArr) == 1 && idxArr[0] == plannercore.FullRange
}
type emptySampler struct{}
func (s *emptySampler) writeChunk(_ *chunk.Chunk) error {
return nil
}
func (s *emptySampler) finished() bool {
return true
}
func (b *executorBuilder) buildTableSample(v *plannercore.PhysicalTableSample) *TableSampleExecutor {
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
e := &TableSampleExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.TableInfo,
startTS: startTS,
}
tblInfo := v.TableInfo.Meta()
if tblInfo.TempTableType != model.TempTableNone {
if tblInfo.TempTableType == model.TempTableGlobal {
e.sampler = &emptySampler{}
} else {
b.err = errors.New("TABLESAMPLE clause can not be applied to local temporary tables")
return nil
}
} else if v.TableSampleInfo.AstNode.SampleMethod == ast.SampleMethodTypeTiDBRegion {
e.sampler = newTableRegionSampler(
b.ctx, v.TableInfo, startTS, v.TableSampleInfo.Partitions, v.Schema(),
v.TableSampleInfo.FullSchema, e.retFieldTypes, v.Desc)
}
return e
}
func (b *executorBuilder) buildCTE(v *plannercore.PhysicalCTE) Executor {
// 1. Build seedPlan.
if b.Ti != nil {
b.Ti.UseNonRecursive = true
}
seedExec := b.build(v.SeedPlan)
if b.err != nil {
return nil
}
// 2. Build tables to store intermediate results.
chkSize := b.ctx.GetSessionVars().MaxChunkSize
tps := seedExec.base().retFieldTypes
// iterOutTbl will be constructed in CTEExec.Open().
var resTbl cteutil.Storage
var iterInTbl cteutil.Storage
storageMap, ok := b.ctx.GetSessionVars().StmtCtx.CTEStorageMap.(map[int]*CTEStorages)
if !ok {
b.err = errors.New("type assertion for CTEStorageMap failed")
return nil
}
storages, ok := storageMap[v.CTE.IDForStorage]
if ok {
// Storage already setup.
resTbl = storages.ResTbl
iterInTbl = storages.IterInTbl
} else {
resTbl = cteutil.NewStorageRowContainer(tps, chkSize)
if err := resTbl.OpenAndRef(); err != nil {
b.err = err
return nil
}
iterInTbl = cteutil.NewStorageRowContainer(tps, chkSize)
if err := iterInTbl.OpenAndRef(); err != nil {
b.err = err
return nil
}
storageMap[v.CTE.IDForStorage] = &CTEStorages{ResTbl: resTbl, IterInTbl: iterInTbl}
}
// 3. Build recursive part.
if v.RecurPlan != nil && b.Ti != nil {
b.Ti.UseRecursive = true
}
recursiveExec := b.build(v.RecurPlan)
if b.err != nil {
return nil
}
var sel []int
if v.CTE.IsDistinct {
sel = make([]int, chkSize)
for i := 0; i < chkSize; i++ {
sel[i] = i
}
}
return &CTEExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
seedExec: seedExec,
recursiveExec: recursiveExec,
resTbl: resTbl,
iterInTbl: iterInTbl,
chkIdx: 0,
isDistinct: v.CTE.IsDistinct,
sel: sel,
hasLimit: v.CTE.HasLimit,
limitBeg: v.CTE.LimitBeg,
limitEnd: v.CTE.LimitEnd,
isInApply: v.CTE.IsInApply,
}
}
func (b *executorBuilder) buildCTETableReader(v *plannercore.PhysicalCTETable) Executor {
storageMap, ok := b.ctx.GetSessionVars().StmtCtx.CTEStorageMap.(map[int]*CTEStorages)
if !ok {
b.err = errors.New("type assertion for CTEStorageMap failed")
return nil
}
storages, ok := storageMap[v.IDForStorage]
if !ok {
b.err = errors.Errorf("iterInTbl should already be set up by CTEExec(id: %d)", v.IDForStorage)
return nil
}
return &CTETableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
iterInTbl: storages.IterInTbl,
chkIdx: 0,
}
}
func (b *executorBuilder) validCanReadTemporaryOrCacheTable(tbl *model.TableInfo) error {
err := b.validCanReadTemporaryTable(tbl)
if err != nil {
return err
}
return b.validCanReadCacheTable(tbl)
}
func (b *executorBuilder) validCanReadCacheTable(tbl *model.TableInfo) error {
if tbl.TableCacheStatusType == model.TableCacheStatusDisable {
return nil
}
sessionVars := b.ctx.GetSessionVars()
// Temporary table can't switch into cache table. so the following code will not cause confusion
if sessionVars.TxnCtx.IsStaleness || b.isStaleness {
return errors.Trace(errors.New("can not stale read cache table"))
}
return nil
}
func (b *executorBuilder) validCanReadTemporaryTable(tbl *model.TableInfo) error {
if tbl.TempTableType == model.TempTableNone {
return nil
}
// Some tools like dumpling use history read to dump all table's records and will be fail if we return an error.
// So we do not check SnapshotTS here
sessionVars := b.ctx.GetSessionVars()
if tbl.TempTableType == model.TempTableLocal && sessionVars.SnapshotTS != 0 {
return errors.New("can not read local temporary table when 'tidb_snapshot' is set")
}
if sessionVars.TxnCtx.IsStaleness || b.isStaleness {
return errors.New("can not stale read temporary table")
}
return nil
}
func (b *executorBuilder) getCacheTable(tblInfo *model.TableInfo, startTS uint64) kv.MemBuffer {
tbl, ok := b.is.TableByID(tblInfo.ID)
if !ok {
b.err = errors.Trace(infoschema.ErrTableNotExists.GenWithStackByArgs(b.ctx.GetSessionVars().CurrentDB, tblInfo.Name))
return nil
}
sessVars := b.ctx.GetSessionVars()
leaseDuration := time.Duration(variable.TableCacheLease.Load()) * time.Second
cacheData, loading := tbl.(table.CachedTable).TryReadFromCache(startTS, leaseDuration)
if cacheData != nil {
sessVars.StmtCtx.ReadFromTableCache = true
return cacheData
} else if loading {
// continue
} else {
if !b.ctx.GetSessionVars().StmtCtx.InExplainStmt && !b.inDeleteStmt && !b.inUpdateStmt {
tbl.(table.CachedTable).UpdateLockForRead(context.Background(), b.ctx.GetStore(), startTS, leaseDuration)
}
}
return nil
}
func (b *executorBuilder) buildCompactTable(v *plannercore.CompactTable) Executor {
if v.ReplicaKind != ast.CompactReplicaKindTiFlash && v.ReplicaKind != ast.CompactReplicaKindAll {
b.err = errors.Errorf("compact %v replica is not supported", strings.ToLower(string(v.ReplicaKind)))
return nil
}
store := b.ctx.GetStore()
tikvStore, ok := store.(tikv.Storage)
if !ok {
b.err = errors.New("compact tiflash replica can only run with tikv compatible storage")
return nil
}
return &CompactTableTiFlashExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tableInfo: v.TableInfo,
tikvStore: tikvStore,
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦