tidb plan 源码
tidb plan 代码
文件路径:/planner/core/plan.go
// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"fmt"
"math"
"strconv"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/kv"
fd "github.com/pingcap/tidb/planner/funcdep"
"github.com/pingcap/tidb/planner/property"
"github.com/pingcap/tidb/planner/util"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/mathutil"
"github.com/pingcap/tidb/util/size"
"github.com/pingcap/tidb/util/stringutil"
"github.com/pingcap/tidb/util/tracing"
"github.com/pingcap/tipb/go-tipb"
)
// Plan is the description of an execution flow.
// It is created from ast.Node first, then optimized by the optimizer,
// finally used by the executor to create a Cursor which executes the statement.
type Plan interface {
// Get the schema.
Schema() *expression.Schema
// Get the ID.
ID() int
// TP get the plan type.
TP() string
// Get the ID in explain statement
ExplainID() fmt.Stringer
// ExplainInfo returns operator information to be explained.
ExplainInfo() string
// replaceExprColumns replace all the column reference in the plan's expression node.
replaceExprColumns(replace map[string]*expression.Column)
SCtx() sessionctx.Context
// property.StatsInfo will return the property.StatsInfo for this plan.
statsInfo() *property.StatsInfo
// OutputNames returns the outputting names of each column.
OutputNames() types.NameSlice
// SetOutputNames sets the outputting name by the given slice.
SetOutputNames(names types.NameSlice)
SelectBlockOffset() int
buildPlanTrace() *tracing.PlanTrace
}
func enforceProperty(p *property.PhysicalProperty, tsk task, ctx sessionctx.Context) task {
if p.TaskTp == property.MppTaskType {
mpp, ok := tsk.(*mppTask)
if !ok || mpp.invalid() {
return invalidTask
}
if !p.IsSortItemAllForPartition() {
ctx.GetSessionVars().RaiseWarningWhenMPPEnforced("MPP mode may be blocked because operator `Sort` is not supported now.")
return invalidTask
}
tsk = mpp.enforceExchanger(p)
}
if p.IsSortItemEmpty() || tsk.plan() == nil {
return tsk
}
if p.TaskTp != property.MppTaskType {
tsk = tsk.convertToRootTask(ctx)
}
sortReqProp := &property.PhysicalProperty{TaskTp: property.RootTaskType, SortItems: p.SortItems, ExpectedCnt: math.MaxFloat64}
sort := PhysicalSort{
ByItems: make([]*util.ByItems, 0, len(p.SortItems)),
IsPartialSort: p.IsSortItemAllForPartition(),
}.Init(ctx, tsk.plan().statsInfo(), tsk.plan().SelectBlockOffset(), sortReqProp)
for _, col := range p.SortItems {
sort.ByItems = append(sort.ByItems, &util.ByItems{Expr: col.Col, Desc: col.Desc})
}
return sort.attach2Task(tsk)
}
// optimizeByShuffle insert `PhysicalShuffle` to optimize performance by running in a parallel manner.
func optimizeByShuffle(tsk task, ctx sessionctx.Context) task {
if tsk.plan() == nil {
return tsk
}
switch p := tsk.plan().(type) {
case *PhysicalWindow:
if shuffle := optimizeByShuffle4Window(p, ctx); shuffle != nil {
return shuffle.attach2Task(tsk)
}
case *PhysicalMergeJoin:
if shuffle := optimizeByShuffle4MergeJoin(p, ctx); shuffle != nil {
return shuffle.attach2Task(tsk)
}
case *PhysicalStreamAgg:
if shuffle := optimizeByShuffle4StreamAgg(p, ctx); shuffle != nil {
return shuffle.attach2Task(tsk)
}
}
return tsk
}
func optimizeByShuffle4Window(pp *PhysicalWindow, ctx sessionctx.Context) *PhysicalShuffle {
concurrency := ctx.GetSessionVars().WindowConcurrency()
if concurrency <= 1 {
return nil
}
sort, ok := pp.Children()[0].(*PhysicalSort)
if !ok {
// Multi-thread executing on SORTED data source is not effective enough by current implementation.
// TODO: Implement a better one.
return nil
}
tail, dataSource := sort, sort.Children()[0]
partitionBy := make([]*expression.Column, 0, len(pp.PartitionBy))
for _, item := range pp.PartitionBy {
partitionBy = append(partitionBy, item.Col)
}
ndv, _ := getColsNDVWithMatchedLen(partitionBy, dataSource.Schema(), dataSource.statsInfo())
if ndv <= 1 {
return nil
}
concurrency = mathutil.Min(concurrency, int(ndv))
byItems := make([]expression.Expression, 0, len(pp.PartitionBy))
for _, item := range pp.PartitionBy {
byItems = append(byItems, item.Col)
}
reqProp := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
shuffle := PhysicalShuffle{
Concurrency: concurrency,
Tails: []PhysicalPlan{tail},
DataSources: []PhysicalPlan{dataSource},
SplitterType: PartitionHashSplitterType,
ByItemArrays: [][]expression.Expression{byItems},
}.Init(ctx, pp.statsInfo(), pp.SelectBlockOffset(), reqProp)
return shuffle
}
func optimizeByShuffle4StreamAgg(pp *PhysicalStreamAgg, ctx sessionctx.Context) *PhysicalShuffle {
concurrency := ctx.GetSessionVars().StreamAggConcurrency()
if concurrency <= 1 {
return nil
}
sort, ok := pp.Children()[0].(*PhysicalSort)
if !ok {
// Multi-thread executing on SORTED data source is not effective enough by current implementation.
// TODO: Implement a better one.
return nil
}
tail, dataSource := sort, sort.Children()[0]
partitionBy := make([]*expression.Column, 0, len(pp.GroupByItems))
for _, item := range pp.GroupByItems {
if col, ok := item.(*expression.Column); ok {
partitionBy = append(partitionBy, col)
}
}
ndv, _ := getColsNDVWithMatchedLen(partitionBy, dataSource.Schema(), dataSource.statsInfo())
if ndv <= 1 {
return nil
}
concurrency = mathutil.Min(concurrency, int(ndv))
reqProp := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
shuffle := PhysicalShuffle{
Concurrency: concurrency,
Tails: []PhysicalPlan{tail},
DataSources: []PhysicalPlan{dataSource},
SplitterType: PartitionHashSplitterType,
ByItemArrays: [][]expression.Expression{cloneExprs(pp.GroupByItems)},
}.Init(ctx, pp.statsInfo(), pp.SelectBlockOffset(), reqProp)
return shuffle
}
func optimizeByShuffle4MergeJoin(pp *PhysicalMergeJoin, ctx sessionctx.Context) *PhysicalShuffle {
concurrency := ctx.GetSessionVars().MergeJoinConcurrency()
if concurrency <= 1 {
return nil
}
children := pp.Children()
dataSources := make([]PhysicalPlan, len(children))
tails := make([]PhysicalPlan, len(children))
for i := range children {
sort, ok := children[i].(*PhysicalSort)
if !ok {
// Multi-thread executing on SORTED data source is not effective enough by current implementation.
// TODO: Implement a better one.
return nil
}
tails[i], dataSources[i] = sort, sort.Children()[0]
}
leftByItemArray := make([]expression.Expression, 0, len(pp.LeftJoinKeys))
for _, col := range pp.LeftJoinKeys {
leftByItemArray = append(leftByItemArray, col.Clone())
}
rightByItemArray := make([]expression.Expression, 0, len(pp.RightJoinKeys))
for _, col := range pp.RightJoinKeys {
rightByItemArray = append(rightByItemArray, col.Clone())
}
reqProp := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
shuffle := PhysicalShuffle{
Concurrency: concurrency,
Tails: tails,
DataSources: dataSources,
SplitterType: PartitionHashSplitterType,
ByItemArrays: [][]expression.Expression{leftByItemArray, rightByItemArray},
}.Init(ctx, pp.statsInfo(), pp.SelectBlockOffset(), reqProp)
return shuffle
}
// LogicalPlan is a tree of logical operators.
// We can do a lot of logical optimizations to it, like predicate pushdown and column pruning.
type LogicalPlan interface {
Plan
// HashCode encodes a LogicalPlan to fast compare whether a LogicalPlan equals to another.
// We use a strict encode method here which ensures there is no conflict.
HashCode() []byte
// PredicatePushDown pushes down the predicates in the where/on/having clauses as deeply as possible.
// It will accept a predicate that is an expression slice, and return the expressions that can't be pushed.
// Because it might change the root if the having clause exists, we need to return a plan that represents a new root.
PredicatePushDown([]expression.Expression, *logicalOptimizeOp) ([]expression.Expression, LogicalPlan)
// PruneColumns prunes the unused columns.
PruneColumns([]*expression.Column, *logicalOptimizeOp) error
// findBestTask converts the logical plan to the physical plan. It's a new interface.
// It is called recursively from the parent to the children to create the result physical plan.
// Some logical plans will convert the children to the physical plans in different ways, and return the one
// With the lowest cost and how many plans are found in this function.
// planCounter is a counter for planner to force a plan.
// If planCounter > 0, the clock_th plan generated in this function will be returned.
// If planCounter = 0, the plan generated in this function will not be considered.
// If planCounter = -1, then we will not force plan.
findBestTask(prop *property.PhysicalProperty, planCounter *PlanCounterTp, op *physicalOptimizeOp) (task, int64, error)
// BuildKeyInfo will collect the information of unique keys into schema.
// Because this method is also used in cascades planner, we cannot use
// things like `p.schema` or `p.children` inside it. We should use the `selfSchema`
// and `childSchema` instead.
BuildKeyInfo(selfSchema *expression.Schema, childSchema []*expression.Schema)
// pushDownTopN will push down the topN or limit operator during logical optimization.
pushDownTopN(topN *LogicalTopN, opt *logicalOptimizeOp) LogicalPlan
// recursiveDeriveStats derives statistic info between plans.
recursiveDeriveStats(colGroups [][]*expression.Column) (*property.StatsInfo, error)
// DeriveStats derives statistic info for current plan node given child stats.
// We need selfSchema, childSchema here because it makes this method can be used in
// cascades planner, where LogicalPlan might not record its children or schema.
DeriveStats(childStats []*property.StatsInfo, selfSchema *expression.Schema, childSchema []*expression.Schema, colGroups [][]*expression.Column) (*property.StatsInfo, error)
// ExtractColGroups extracts column groups from child operator whose DNVs are required by the current operator.
// For example, if current operator is LogicalAggregation of `Group By a, b`, we indicate the child operators to maintain
// and propagate the NDV info of column group (a, b), to improve the row count estimation of current LogicalAggregation.
// The parameter colGroups are column groups required by upper operators, besides from the column groups derived from
// current operator, we should pass down parent colGroups to child operator as many as possible.
ExtractColGroups(colGroups [][]*expression.Column) [][]*expression.Column
// PreparePossibleProperties is only used for join and aggregation. Like group by a,b,c, all permutation of (a,b,c) is
// valid, but the ordered indices in leaf plan is limited. So we can get all possible order properties by a pre-walking.
PreparePossibleProperties(schema *expression.Schema, childrenProperties ...[][]*expression.Column) [][]*expression.Column
// exhaustPhysicalPlans generates all possible plans that can match the required property.
// It will return:
// 1. All possible plans that can match the required property.
// 2. Whether the SQL hint can work. Return true if there is no hint.
exhaustPhysicalPlans(*property.PhysicalProperty) (physicalPlans []PhysicalPlan, hintCanWork bool, err error)
// ExtractCorrelatedCols extracts correlated columns inside the LogicalPlan.
ExtractCorrelatedCols() []*expression.CorrelatedColumn
// MaxOneRow means whether this operator only returns max one row.
MaxOneRow() bool
// Get all the children.
Children() []LogicalPlan
// SetChildren sets the children for the plan.
SetChildren(...LogicalPlan)
// SetChild sets the ith child for the plan.
SetChild(i int, child LogicalPlan)
// rollBackTaskMap roll back all taskMap's logs after TimeStamp TS.
rollBackTaskMap(TS uint64)
// canPushToCop check if we might push this plan to a specific store.
canPushToCop(store kv.StoreType) bool
// ExtractFD derive the FDSet from the tree bottom up.
ExtractFD() *fd.FDSet
}
// PhysicalPlan is a tree of the physical operators.
type PhysicalPlan interface {
Plan
// GetPlanCost calculates the cost of the plan if it has not been calculated yet and returns the cost.
GetPlanCost(taskType property.TaskType, option *PlanCostOption) (float64, error)
// attach2Task makes the current physical plan as the father of task's physicalPlan and updates the cost of
// current task. If the child's task is cop task, some operator may close this task and return a new rootTask.
attach2Task(...task) task
// ToPB converts physical plan to tipb executor.
ToPB(ctx sessionctx.Context, storeType kv.StoreType) (*tipb.Executor, error)
// GetChildReqProps gets the required property by child index.
GetChildReqProps(idx int) *property.PhysicalProperty
// StatsCount returns the count of property.StatsInfo for this plan.
StatsCount() float64
// ExtractCorrelatedCols extracts correlated columns inside the PhysicalPlan.
ExtractCorrelatedCols() []*expression.CorrelatedColumn
// Children get all the children.
Children() []PhysicalPlan
// SetChildren sets the children for the plan.
SetChildren(...PhysicalPlan)
// SetChild sets the ith child for the plan.
SetChild(i int, child PhysicalPlan)
// ResolveIndices resolves the indices for columns. After doing this, the columns can evaluate the rows by their indices.
ResolveIndices() error
// Stats returns the StatsInfo of the plan.
Stats() *property.StatsInfo
// ExplainNormalizedInfo returns operator normalized information for generating digest.
ExplainNormalizedInfo() string
// Clone clones this physical plan.
Clone() (PhysicalPlan, error)
// appendChildCandidate append child physicalPlan into tracer in order to track each child physicalPlan which can't
// be tracked during findBestTask or enumeratePhysicalPlans4Task
appendChildCandidate(op *physicalOptimizeOp)
// MemoryUsage return the memory usage of PhysicalPlan
MemoryUsage() int64
}
// NewDefaultPlanCostOption returns PlanCostOption
func NewDefaultPlanCostOption() *PlanCostOption {
return &PlanCostOption{}
}
// PlanCostOption indicates option during GetPlanCost
type PlanCostOption struct {
CostFlag uint64
tracer *physicalOptimizeOp
}
// WithCostFlag set costflag
func (op *PlanCostOption) WithCostFlag(flag uint64) *PlanCostOption {
if op == nil {
return nil
}
op.CostFlag = flag
return op
}
// WithOptimizeTracer set tracer
func (op *PlanCostOption) WithOptimizeTracer(tracer *physicalOptimizeOp) *PlanCostOption {
if op == nil {
return nil
}
op.tracer = tracer
return op
}
type baseLogicalPlan struct {
basePlan
taskMap map[string]task
// taskMapBak forms a backlog stack of taskMap, used to roll back the taskMap.
taskMapBak []string
// taskMapBakTS stores the timestamps of logs.
taskMapBakTS []uint64
self LogicalPlan
maxOneRow bool
children []LogicalPlan
// fdSet is a set of functional dependencies(FDs) which powers many optimizations,
// including eliminating unnecessary DISTINCT operators, simplifying ORDER BY columns,
// removing Max1Row operators, and mapping semi-joins to inner-joins.
// for now, it's hard to maintain in individual operator, build it from bottom up when using.
fdSet *fd.FDSet
}
// ExtractFD return the children[0]'s fdSet if there are no adding/removing fd in this logic plan.
func (p *baseLogicalPlan) ExtractFD() *fd.FDSet {
if p.fdSet != nil {
return p.fdSet
}
fds := &fd.FDSet{HashCodeToUniqueID: make(map[string]int)}
for _, ch := range p.children {
fds.AddFrom(ch.ExtractFD())
}
return fds
}
func (p *baseLogicalPlan) MaxOneRow() bool {
return p.maxOneRow
}
// ExplainInfo implements Plan interface.
func (*baseLogicalPlan) ExplainInfo() string {
return ""
}
type basePhysicalPlan struct {
basePlan
childrenReqProps []*property.PhysicalProperty
self PhysicalPlan
children []PhysicalPlan
// used by the new cost interface
planCostInit bool
planCost float64
// Only for MPP. If TiFlashFineGrainedShuffleStreamCount > 0:
// 1. For ExchangeSender, means its output will be partitioned by hash key.
// 2. For ExchangeReceiver/Window/Sort, means its input is already partitioned.
TiFlashFineGrainedShuffleStreamCount uint64
}
func (p *basePhysicalPlan) cloneWithSelf(newSelf PhysicalPlan) (*basePhysicalPlan, error) {
base := &basePhysicalPlan{
basePlan: p.basePlan,
self: newSelf,
TiFlashFineGrainedShuffleStreamCount: p.TiFlashFineGrainedShuffleStreamCount,
}
for _, child := range p.children {
cloned, err := child.Clone()
if err != nil {
return nil, err
}
base.children = append(base.children, cloned)
}
for _, prop := range p.childrenReqProps {
if prop == nil {
continue
}
base.childrenReqProps = append(base.childrenReqProps, prop.CloneEssentialFields())
}
return base, nil
}
// Clone implements PhysicalPlan interface.
func (p *basePhysicalPlan) Clone() (PhysicalPlan, error) {
return nil, errors.Errorf("%T doesn't support cloning", p.self)
}
// ExplainInfo implements Plan interface.
func (*basePhysicalPlan) ExplainInfo() string {
return ""
}
// ExplainNormalizedInfo implements PhysicalPlan interface.
func (*basePhysicalPlan) ExplainNormalizedInfo() string {
return ""
}
func (p *basePhysicalPlan) GetChildReqProps(idx int) *property.PhysicalProperty {
return p.childrenReqProps[idx]
}
// ExtractCorrelatedCols implements PhysicalPlan interface.
func (*basePhysicalPlan) ExtractCorrelatedCols() []*expression.CorrelatedColumn {
return nil
}
// MemoryUsage return the memory usage of basePhysicalPlan
func (p *basePhysicalPlan) MemoryUsage() (sum int64) {
if p == nil {
return
}
sum = p.basePlan.MemoryUsage() + size.SizeOfSlice + int64(cap(p.childrenReqProps))*size.SizeOfPointer +
size.SizeOfSlice + int64(cap(p.children)+1)*size.SizeOfInterface + size.SizeOfFloat64*2 +
size.SizeOfUint64 + size.SizeOfBool
for _, prop := range p.childrenReqProps {
sum += prop.MemoryUsage()
}
//todo: memtrace: add children's memory
return
}
// GetLogicalTS4TaskMap get the logical TimeStamp now to help rollback the TaskMap changes after that.
func (p *baseLogicalPlan) GetLogicalTS4TaskMap() uint64 {
p.ctx.GetSessionVars().StmtCtx.TaskMapBakTS++
return p.ctx.GetSessionVars().StmtCtx.TaskMapBakTS
}
func (p *baseLogicalPlan) rollBackTaskMap(ts uint64) {
if !p.ctx.GetSessionVars().StmtCtx.StmtHints.TaskMapNeedBackUp() {
return
}
if len(p.taskMapBak) > 0 {
// Rollback all the logs with TimeStamp TS.
n := len(p.taskMapBak)
for i := 0; i < n; i++ {
cur := p.taskMapBak[i]
if p.taskMapBakTS[i] < ts {
continue
}
// Remove the i_th log.
p.taskMapBak = append(p.taskMapBak[:i], p.taskMapBak[i+1:]...)
p.taskMapBakTS = append(p.taskMapBakTS[:i], p.taskMapBakTS[i+1:]...)
i--
n--
// Roll back taskMap.
p.taskMap[cur] = nil
}
}
for _, child := range p.children {
child.rollBackTaskMap(ts)
}
}
func (p *baseLogicalPlan) getTask(prop *property.PhysicalProperty) task {
key := prop.HashCode()
return p.taskMap[string(key)]
}
func (p *baseLogicalPlan) storeTask(prop *property.PhysicalProperty, task task) {
key := prop.HashCode()
if p.ctx.GetSessionVars().StmtCtx.StmtHints.TaskMapNeedBackUp() {
// Empty string for useless change.
ts := p.GetLogicalTS4TaskMap()
p.taskMapBakTS = append(p.taskMapBakTS, ts)
p.taskMapBak = append(p.taskMapBak, string(key))
}
p.taskMap[string(key)] = task
}
// HasMaxOneRow returns if the LogicalPlan will output at most one row.
func HasMaxOneRow(p LogicalPlan, childMaxOneRow []bool) bool {
if len(childMaxOneRow) == 0 {
// The reason why we use this check is that, this function
// is used both in planner/core and planner/cascades.
// In cascades planner, LogicalPlan may have no `children`.
return false
}
switch x := p.(type) {
case *LogicalLock, *LogicalLimit, *LogicalSort, *LogicalSelection,
*LogicalApply, *LogicalProjection, *LogicalWindow, *LogicalAggregation:
return childMaxOneRow[0]
case *LogicalMaxOneRow:
return true
case *LogicalJoin:
switch x.JoinType {
case SemiJoin, AntiSemiJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin:
return childMaxOneRow[0]
default:
return childMaxOneRow[0] && childMaxOneRow[1]
}
}
return false
}
// BuildKeyInfo implements LogicalPlan BuildKeyInfo interface.
func (p *baseLogicalPlan) BuildKeyInfo(_ *expression.Schema, _ []*expression.Schema) {
childMaxOneRow := make([]bool, len(p.children))
for i := range p.children {
childMaxOneRow[i] = p.children[i].MaxOneRow()
}
p.maxOneRow = HasMaxOneRow(p.self, childMaxOneRow)
}
// BuildKeyInfo implements LogicalPlan BuildKeyInfo interface.
func (p *logicalSchemaProducer) BuildKeyInfo(selfSchema *expression.Schema, childSchema []*expression.Schema) {
selfSchema.Keys = nil
p.baseLogicalPlan.BuildKeyInfo(selfSchema, childSchema)
// default implementation for plans has only one child: proprgate child keys
// multi-children plans are likely to have particular implementation.
if len(childSchema) == 1 {
for _, key := range childSchema[0].Keys {
indices := selfSchema.ColumnsIndices(key)
if indices == nil {
continue
}
newKey := make([]*expression.Column, 0, len(key))
for _, i := range indices {
newKey = append(newKey, selfSchema.Columns[i])
}
selfSchema.Keys = append(selfSchema.Keys, newKey)
}
}
}
func newBasePlan(ctx sessionctx.Context, tp string, offset int) basePlan {
ctx.GetSessionVars().PlanID++
id := ctx.GetSessionVars().PlanID
return basePlan{
tp: tp,
id: id,
ctx: ctx,
blockOffset: offset,
}
}
func newBaseLogicalPlan(ctx sessionctx.Context, tp string, self LogicalPlan, offset int) baseLogicalPlan {
return baseLogicalPlan{
taskMap: make(map[string]task),
taskMapBak: make([]string, 0, 10),
taskMapBakTS: make([]uint64, 0, 10),
basePlan: newBasePlan(ctx, tp, offset),
self: self,
}
}
func newBasePhysicalPlan(ctx sessionctx.Context, tp string, self PhysicalPlan, offset int) basePhysicalPlan {
return basePhysicalPlan{
basePlan: newBasePlan(ctx, tp, offset),
self: self,
}
}
func (*baseLogicalPlan) ExtractCorrelatedCols() []*expression.CorrelatedColumn {
return nil
}
// PruneColumns implements LogicalPlan interface.
func (p *baseLogicalPlan) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
if len(p.children) == 0 {
return nil
}
return p.children[0].PruneColumns(parentUsedCols, opt)
}
// basePlan implements base Plan interface.
// Should be used as embedded struct in Plan implementations.
type basePlan struct {
tp string
id int
ctx sessionctx.Context
stats *property.StatsInfo
blockOffset int
}
// OutputNames returns the outputting names of each column.
func (*basePlan) OutputNames() types.NameSlice {
return nil
}
func (*basePlan) SetOutputNames(_ types.NameSlice) {}
func (*basePlan) replaceExprColumns(_ map[string]*expression.Column) {}
// ID implements Plan ID interface.
func (p *basePlan) ID() int {
return p.id
}
// property.StatsInfo implements the Plan interface.
func (p *basePlan) statsInfo() *property.StatsInfo {
return p.stats
}
// ExplainInfo implements Plan interface.
func (*basePlan) ExplainInfo() string {
return "N/A"
}
func (p *basePlan) ExplainID() fmt.Stringer {
return stringutil.MemoizeStr(func() string {
if p.ctx != nil && p.ctx.GetSessionVars().StmtCtx.IgnoreExplainIDSuffix {
return p.tp
}
return p.tp + "_" + strconv.Itoa(p.id)
})
}
// TP implements Plan interface.
func (p *basePlan) TP() string {
return p.tp
}
func (p *basePlan) SelectBlockOffset() int {
return p.blockOffset
}
// Stats implements Plan Stats interface.
func (p *basePlan) Stats() *property.StatsInfo {
return p.stats
}
// basePlanSize is the size of basePlan.
const basePlanSize = int64(unsafe.Sizeof(basePlan{}))
// MemoryUsage return the memory usage of basePlan
func (p *basePlan) MemoryUsage() (sum int64) {
if p == nil {
return
}
sum = basePlanSize + int64(len(p.tp))
return sum
}
// Schema implements Plan Schema interface.
func (p *baseLogicalPlan) Schema() *expression.Schema {
return p.children[0].Schema()
}
func (p *baseLogicalPlan) OutputNames() types.NameSlice {
return p.children[0].OutputNames()
}
func (p *baseLogicalPlan) SetOutputNames(names types.NameSlice) {
p.children[0].SetOutputNames(names)
}
// Schema implements Plan Schema interface.
func (p *basePhysicalPlan) Schema() *expression.Schema {
return p.children[0].Schema()
}
// Children implements LogicalPlan Children interface.
func (p *baseLogicalPlan) Children() []LogicalPlan {
return p.children
}
// Children implements PhysicalPlan Children interface.
func (p *basePhysicalPlan) Children() []PhysicalPlan {
return p.children
}
// SetChildren implements LogicalPlan SetChildren interface.
func (p *baseLogicalPlan) SetChildren(children ...LogicalPlan) {
p.children = children
}
// SetChildren implements PhysicalPlan SetChildren interface.
func (p *basePhysicalPlan) SetChildren(children ...PhysicalPlan) {
p.children = children
}
// SetChild implements LogicalPlan SetChild interface.
func (p *baseLogicalPlan) SetChild(i int, child LogicalPlan) {
p.children[i] = child
}
// SetChild implements PhysicalPlan SetChild interface.
func (p *basePhysicalPlan) SetChild(i int, child PhysicalPlan) {
p.children[i] = child
}
// Context implements Plan Context interface.
func (p *basePlan) SCtx() sessionctx.Context {
return p.ctx
}
// buildPlanTrace implements Plan
func (p *basePhysicalPlan) buildPlanTrace() *tracing.PlanTrace {
planTrace := &tracing.PlanTrace{ID: p.ID(), TP: p.self.TP(), ExplainInfo: p.self.ExplainInfo()}
for _, child := range p.Children() {
planTrace.Children = append(planTrace.Children, child.buildPlanTrace())
}
return planTrace
}
// buildPlanTrace implements Plan
func (p *baseLogicalPlan) buildPlanTrace() *tracing.PlanTrace {
planTrace := &tracing.PlanTrace{ID: p.ID(), TP: p.TP(), ExplainInfo: p.self.ExplainInfo()}
for _, child := range p.Children() {
planTrace.Children = append(planTrace.Children, child.buildPlanTrace())
}
return planTrace
}
// buildPlanTrace implements Plan
func (p *basePlan) buildPlanTrace() *tracing.PlanTrace {
planTrace := &tracing.PlanTrace{ID: p.ID(), TP: p.TP()}
return planTrace
}
func (p *basePhysicalPlan) appendChildCandidate(op *physicalOptimizeOp) {
if len(p.Children()) < 1 {
return
}
childrenID := make([]int, 0)
for _, child := range p.Children() {
childCandidate := &tracing.CandidatePlanTrace{
PlanTrace: &tracing.PlanTrace{TP: child.TP(), ID: child.ID(),
ExplainInfo: child.ExplainInfo()},
}
op.tracer.AppendCandidate(childCandidate)
child.appendChildCandidate(op)
childrenID = append(childrenID, child.ID())
}
op.tracer.Candidates[p.ID()].PlanTrace.AppendChildrenID(childrenID...)
}
相关信息
相关文章
tidb collect_column_stats_usage 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦