spark Utils 源码

  • 2022-10-20
  • 浏览 (365)

spark Utils 代码

文件路径:/core/src/main/scala/org/apache/spark/util/collection/Utils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.util.collection

import java.util.Collections

import scala.collection.JavaConverters._
import scala.collection.immutable

import com.google.common.collect.{Iterators => GuavaIterators, Ordering => GuavaOrdering}

/**
 * Utility functions for collections.
 */
private[spark] object Utils {

  /**
   * Returns the first K elements from the input as defined by the specified implicit Ordering[T]
   * and maintains the ordering.
   */
  def takeOrdered[T](input: Iterator[T], num: Int)(implicit ord: Ordering[T]): Iterator[T] = {
    val ordering = new GuavaOrdering[T] {
      override def compare(l: T, r: T): Int = ord.compare(l, r)
    }
    ordering.leastOf(input.asJava, num).iterator.asScala
  }

  /**
   * Returns an iterator over the merged contents of all given input iterators,
   * traversing every element of the input iterators.
   * Equivalent entries will not be de-duplicated.
   *
   * Callers must ensure that all the input iterators are already sorted by
   * the same ordering `ord`, otherwise the result is likely to be incorrect.
   */
  def mergeOrdered[T](inputs: Iterable[TraversableOnce[T]])(
    implicit ord: Ordering[T]): Iterator[T] = {
    val ordering = new GuavaOrdering[T] {
      override def compare(l: T, r: T): Int = ord.compare(l, r)
    }
    GuavaIterators.mergeSorted(
      inputs.map(_.toIterator.asJava).asJava, ordering).asScala
  }

  /**
   * Only returns `Some` iff ALL elements in `input` are defined. In this case, it is
   * equivalent to `Some(input.flatten)`.
   *
   * Otherwise, returns `None`.
   */
  def sequenceToOption[T](input: Seq[Option[T]]): Option[Seq[T]] =
    if (input.forall(_.isDefined)) Some(input.flatten) else None

  /**
   * Same function as `keys.zip(values).toMap`, but has perf gain.
   */
  def toMap[K, V](keys: Iterable[K], values: Iterable[V]): Map[K, V] = {
    val builder = immutable.Map.newBuilder[K, V]
    val keyIter = keys.iterator
    val valueIter = values.iterator
    while (keyIter.hasNext && valueIter.hasNext) {
      builder += (keyIter.next(), valueIter.next()).asInstanceOf[(K, V)]
    }
    builder.result()
  }

  /**
   * Same function as `keys.zipWithIndex.toMap`, but has perf gain.
   */
  def toMapWithIndex[K](keys: Iterable[K]): Map[K, Int] = {
    val builder = immutable.Map.newBuilder[K, Int]
    val keyIter = keys.iterator
    var idx = 0
    while (keyIter.hasNext) {
      builder += (keyIter.next(), idx).asInstanceOf[(K, Int)]
      idx = idx + 1
    }
    builder.result()
  }

  /**
   * Same function as `keys.zip(values).toMap.asJava`, but has perf gain.
   */
  def toJavaMap[K, V](keys: Iterable[K], values: Iterable[V]): java.util.Map[K, V] = {
    val map = new java.util.HashMap[K, V]()
    val keyIter = keys.iterator
    val valueIter = values.iterator
    while (keyIter.hasNext && valueIter.hasNext) {
      map.put(keyIter.next(), valueIter.next())
    }
    Collections.unmodifiableMap(map)
  }
}

相关信息

spark 源码目录

相关文章

spark AppendOnlyMap 源码

spark BitSet 源码

spark CompactBuffer 源码

spark ExternalAppendOnlyMap 源码

spark ExternalSorter 源码

spark ImmutableBitSet 源码

spark MedianHeap 源码

spark OpenHashMap 源码

spark OpenHashSet 源码

spark PairsWriter 源码

0  赞