spark ExternalAppendOnlyMap 源码

  • 2022-10-20
  • 浏览 (347)

spark ExternalAppendOnlyMap 代码

文件路径:/core/src/main/scala/org/apache/spark/util/collection/ExternalAppendOnlyMap.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.util.collection

import java.io._
import java.util.Comparator

import scala.collection.BufferedIterator
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

import com.google.common.io.ByteStreams

import org.apache.spark.{SparkEnv, TaskContext}
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.executor.ShuffleWriteMetrics
import org.apache.spark.internal.{config, Logging}
import org.apache.spark.serializer.{DeserializationStream, Serializer, SerializerManager}
import org.apache.spark.storage.{BlockId, BlockManager}
import org.apache.spark.util.CompletionIterator
import org.apache.spark.util.collection.ExternalAppendOnlyMap.HashComparator

/**
 * :: DeveloperApi ::
 * An append-only map that spills sorted content to disk when there is insufficient space for it
 * to grow.
 *
 * This map takes two passes over the data:
 *
 *   (1) Values are merged into combiners, which are sorted and spilled to disk as necessary
 *   (2) Combiners are read from disk and merged together
 *
 * The setting of the spill threshold faces the following trade-off: If the spill threshold is
 * too high, the in-memory map may occupy more memory than is available, resulting in OOM.
 * However, if the spill threshold is too low, we spill frequently and incur unnecessary disk
 * writes. This may lead to a performance regression compared to the normal case of using the
 * non-spilling AppendOnlyMap.
 */
@DeveloperApi
class ExternalAppendOnlyMap[K, V, C](
    createCombiner: V => C,
    mergeValue: (C, V) => C,
    mergeCombiners: (C, C) => C,
    serializer: Serializer = SparkEnv.get.serializer,
    blockManager: BlockManager = SparkEnv.get.blockManager,
    context: TaskContext = TaskContext.get(),
    serializerManager: SerializerManager = SparkEnv.get.serializerManager)
  extends Spillable[SizeTracker](context.taskMemoryManager())
  with Serializable
  with Logging
  with Iterable[(K, C)] {

  if (context == null) {
    throw new IllegalStateException(
      "Spillable collections should not be instantiated outside of tasks")
  }

  // Backwards-compatibility constructor for binary compatibility
  def this(
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      serializer: Serializer,
      blockManager: BlockManager) = {
    this(createCombiner, mergeValue, mergeCombiners, serializer, blockManager, TaskContext.get())
  }

  /**
   * Exposed for testing
   */
  @volatile private[collection] var currentMap = new SizeTrackingAppendOnlyMap[K, C]
  private val spilledMaps = new ArrayBuffer[DiskMapIterator]
  private val sparkConf = SparkEnv.get.conf
  private val diskBlockManager = blockManager.diskBlockManager

  /**
   * Size of object batches when reading/writing from serializers.
   *
   * Objects are written in batches, with each batch using its own serialization stream. This
   * cuts down on the size of reference-tracking maps constructed when deserializing a stream.
   *
   * NOTE: Setting this too low can cause excessive copying when serializing, since some serializers
   * grow internal data structures by growing + copying every time the number of objects doubles.
   */
  private val serializerBatchSize = sparkConf.get(config.SHUFFLE_SPILL_BATCH_SIZE)

  // Number of bytes spilled in total
  private var _diskBytesSpilled = 0L
  def diskBytesSpilled: Long = _diskBytesSpilled

  // Use getSizeAsKb (not bytes) to maintain backwards compatibility if no units are provided
  private val fileBufferSize = sparkConf.get(config.SHUFFLE_FILE_BUFFER_SIZE).toInt * 1024

  // Write metrics
  private val writeMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics()

  // Peak size of the in-memory map observed so far, in bytes
  private var _peakMemoryUsedBytes: Long = 0L
  def peakMemoryUsedBytes: Long = _peakMemoryUsedBytes

  private val keyComparator = new HashComparator[K]
  private val ser = serializer.newInstance()

  @volatile private var readingIterator: SpillableIterator = null

  /**
   * Number of files this map has spilled so far.
   * Exposed for testing.
   */
  private[collection] def numSpills: Int = spilledMaps.size

  /**
   * Insert the given key and value into the map.
   */
  def insert(key: K, value: V): Unit = {
    insertAll(Iterator((key, value)))
  }

  /**
   * Insert the given iterator of keys and values into the map.
   *
   * When the underlying map needs to grow, check if the global pool of shuffle memory has
   * enough room for this to happen. If so, allocate the memory required to grow the map;
   * otherwise, spill the in-memory map to disk.
   *
   * The shuffle memory usage of the first trackMemoryThreshold entries is not tracked.
   */
  def insertAll(entries: Iterator[Product2[K, V]]): Unit = {
    if (currentMap == null) {
      throw new IllegalStateException(
        "Cannot insert new elements into a map after calling iterator")
    }
    // An update function for the map that we reuse across entries to avoid allocating
    // a new closure each time
    var curEntry: Product2[K, V] = null
    val update: (Boolean, C) => C = (hadVal, oldVal) => {
      if (hadVal) mergeValue(oldVal, curEntry._2) else createCombiner(curEntry._2)
    }

    while (entries.hasNext) {
      curEntry = entries.next()
      val estimatedSize = currentMap.estimateSize()
      if (estimatedSize > _peakMemoryUsedBytes) {
        _peakMemoryUsedBytes = estimatedSize
      }
      if (maybeSpill(currentMap, estimatedSize)) {
        currentMap = new SizeTrackingAppendOnlyMap[K, C]
      }
      currentMap.changeValue(curEntry._1, update)
      addElementsRead()
    }
  }

  /**
   * Insert the given iterable of keys and values into the map.
   *
   * When the underlying map needs to grow, check if the global pool of shuffle memory has
   * enough room for this to happen. If so, allocate the memory required to grow the map;
   * otherwise, spill the in-memory map to disk.
   *
   * The shuffle memory usage of the first trackMemoryThreshold entries is not tracked.
   */
  def insertAll(entries: Iterable[Product2[K, V]]): Unit = {
    insertAll(entries.iterator)
  }

  /**
   * Sort the existing contents of the in-memory map and spill them to a temporary file on disk.
   */
  override protected[this] def spill(collection: SizeTracker): Unit = {
    val inMemoryIterator = currentMap.destructiveSortedIterator(keyComparator)
    val diskMapIterator = spillMemoryIteratorToDisk(inMemoryIterator)
    spilledMaps += diskMapIterator
  }

  /**
   * Force to spilling the current in-memory collection to disk to release memory,
   * It will be called by TaskMemoryManager when there is not enough memory for the task.
   */
  override protected[this] def forceSpill(): Boolean = {
    if (readingIterator != null) {
      val isSpilled = readingIterator.spill()
      if (isSpilled) {
        currentMap = null
      }
      isSpilled
    } else if (currentMap.size > 0) {
      spill(currentMap)
      currentMap = new SizeTrackingAppendOnlyMap[K, C]
      true
    } else {
      false
    }
  }

  /**
   * Spill the in-memory Iterator to a temporary file on disk.
   */
  private[this] def spillMemoryIteratorToDisk(inMemoryIterator: Iterator[(K, C)])
      : DiskMapIterator = {
    val (blockId, file) = diskBlockManager.createTempLocalBlock()
    val writer = blockManager.getDiskWriter(blockId, file, ser, fileBufferSize, writeMetrics)
    var objectsWritten = 0

    // List of batch sizes (bytes) in the order they are written to disk
    val batchSizes = new ArrayBuffer[Long]

    // Flush the disk writer's contents to disk, and update relevant variables
    def flush(): Unit = {
      val segment = writer.commitAndGet()
      batchSizes += segment.length
      _diskBytesSpilled += segment.length
      objectsWritten = 0
    }

    var success = false
    try {
      while (inMemoryIterator.hasNext) {
        val kv = inMemoryIterator.next()
        writer.write(kv._1, kv._2)
        objectsWritten += 1

        if (objectsWritten == serializerBatchSize) {
          flush()
        }
      }
      if (objectsWritten > 0) {
        flush()
        writer.close()
      } else {
        writer.revertPartialWritesAndClose()
      }
      success = true
    } finally {
      if (!success) {
        // This code path only happens if an exception was thrown above before we set success;
        // close our stuff and let the exception be thrown further
        writer.closeAndDelete()
      }
    }

    new DiskMapIterator(file, blockId, batchSizes)
  }

  /**
   * Returns a destructive iterator for iterating over the entries of this map.
   * If this iterator is forced spill to disk to release memory when there is not enough memory,
   * it returns pairs from an on-disk map.
   */
  def destructiveIterator(inMemoryIterator: Iterator[(K, C)]): Iterator[(K, C)] = {
    readingIterator = new SpillableIterator(inMemoryIterator)
    readingIterator.toCompletionIterator
  }

  /**
   * Return a destructive iterator that merges the in-memory map with the spilled maps.
   * If no spill has occurred, simply return the in-memory map's iterator.
   */
  override def iterator: Iterator[(K, C)] = {
    if (currentMap == null) {
      throw new IllegalStateException(
        "ExternalAppendOnlyMap.iterator is destructive and should only be called once.")
    }
    if (spilledMaps.isEmpty) {
      destructiveIterator(currentMap.iterator)
    } else {
      new ExternalIterator()
    }
  }

  private def freeCurrentMap(): Unit = {
    if (currentMap != null) {
      currentMap = null // So that the memory can be garbage-collected
      releaseMemory()
    }
  }

  /**
   * An iterator that sort-merges (K, C) pairs from the in-memory map and the spilled maps
   */
  private class ExternalIterator extends Iterator[(K, C)] {

    // A queue that maintains a buffer for each stream we are currently merging
    // This queue maintains the invariant that it only contains non-empty buffers
    private val mergeHeap = new mutable.PriorityQueue[StreamBuffer]

    // Input streams are derived both from the in-memory map and spilled maps on disk
    // The in-memory map is sorted in place, while the spilled maps are already in sorted order
    private val sortedMap = destructiveIterator(
      currentMap.destructiveSortedIterator(keyComparator))
    private val inputStreams = (Seq(sortedMap) ++ spilledMaps).map(it => it.buffered)

    inputStreams.foreach { it =>
      val kcPairs = new ArrayBuffer[(K, C)]
      readNextHashCode(it, kcPairs)
      if (kcPairs.length > 0) {
        mergeHeap.enqueue(new StreamBuffer(it, kcPairs))
      }
    }

    /**
     * Fill a buffer with the next set of keys with the same hash code from a given iterator. We
     * read streams one hash code at a time to ensure we don't miss elements when they are merged.
     *
     * Assumes the given iterator is in sorted order of hash code.
     *
     * @param it iterator to read from
     * @param buf buffer to write the results into
     */
    private def readNextHashCode(it: BufferedIterator[(K, C)], buf: ArrayBuffer[(K, C)]): Unit = {
      if (it.hasNext) {
        var kc = it.next()
        buf += kc
        val minHash = hashKey(kc)
        while (it.hasNext && it.head._1.hashCode() == minHash) {
          kc = it.next()
          buf += kc
        }
      }
    }

    /**
     * If the given buffer contains a value for the given key, merge that value into
     * baseCombiner and remove the corresponding (K, C) pair from the buffer.
     */
    private def mergeIfKeyExists(key: K, baseCombiner: C, buffer: StreamBuffer): C = {
      var i = 0
      while (i < buffer.pairs.length) {
        val pair = buffer.pairs(i)
        if (pair._1 == key) {
          // Note that there's at most one pair in the buffer with a given key, since we always
          // merge stuff in a map before spilling, so it's safe to return after the first we find
          removeFromBuffer(buffer.pairs, i)
          return mergeCombiners(baseCombiner, pair._2)
        }
        i += 1
      }
      baseCombiner
    }

    /**
     * Remove the index'th element from an ArrayBuffer in constant time, swapping another element
     * into its place. This is more efficient than the ArrayBuffer.remove method because it does
     * not have to shift all the elements in the array over. It works for our array buffers because
     * we don't care about the order of elements inside, we just want to search them for a key.
     */
    private def removeFromBuffer[T](buffer: ArrayBuffer[T], index: Int): T = {
      val elem = buffer(index)
      buffer(index) = buffer(buffer.size - 1)  // This also works if index == buffer.size - 1
      buffer.trimEnd(1)
      elem
    }

    /**
     * Return true if there exists an input stream that still has unvisited pairs.
     */
    override def hasNext: Boolean = mergeHeap.nonEmpty

    /**
     * Select a key with the minimum hash, then combine all values with the same key from all
     * input streams.
     */
    override def next(): (K, C) = {
      if (mergeHeap.isEmpty) {
        throw new NoSuchElementException
      }
      // Select a key from the StreamBuffer that holds the lowest key hash
      val minBuffer = mergeHeap.dequeue()
      val minPairs = minBuffer.pairs
      val minHash = minBuffer.minKeyHash
      val minPair = removeFromBuffer(minPairs, 0)
      val minKey = minPair._1
      var minCombiner = minPair._2
      assert(hashKey(minPair) == minHash)

      // For all other streams that may have this key (i.e. have the same minimum key hash),
      // merge in the corresponding value (if any) from that stream
      val mergedBuffers = ArrayBuffer[StreamBuffer](minBuffer)
      while (mergeHeap.nonEmpty && mergeHeap.head.minKeyHash == minHash) {
        val newBuffer = mergeHeap.dequeue()
        minCombiner = mergeIfKeyExists(minKey, minCombiner, newBuffer)
        mergedBuffers += newBuffer
      }

      // Repopulate each visited stream buffer and add it back to the queue if it is non-empty
      mergedBuffers.foreach { buffer =>
        if (buffer.isEmpty) {
          readNextHashCode(buffer.iterator, buffer.pairs)
        }
        if (!buffer.isEmpty) {
          mergeHeap.enqueue(buffer)
        }
      }

      (minKey, minCombiner)
    }

    /**
     * A buffer for streaming from a map iterator (in-memory or on-disk) sorted by key hash.
     * Each buffer maintains all of the key-value pairs with what is currently the lowest hash
     * code among keys in the stream. There may be multiple keys if there are hash collisions.
     * Note that because when we spill data out, we only spill one value for each key, there is
     * at most one element for each key.
     *
     * StreamBuffers are ordered by the minimum key hash currently available in their stream so
     * that we can put them into a heap and sort that.
     */
    private class StreamBuffer(
        val iterator: BufferedIterator[(K, C)],
        val pairs: ArrayBuffer[(K, C)])
      extends Comparable[StreamBuffer] {

      def isEmpty: Boolean = pairs.length == 0

      // Invalid if there are no more pairs in this stream
      def minKeyHash: Int = {
        assert(pairs.length > 0)
        hashKey(pairs.head)
      }

      override def compareTo(other: StreamBuffer): Int = {
        // descending order because mutable.PriorityQueue dequeues the max, not the min
        if (other.minKeyHash < minKeyHash) -1 else if (other.minKeyHash == minKeyHash) 0 else 1
      }
    }
  }

  /**
   * An iterator that returns (K, C) pairs in sorted order from an on-disk map
   */
  private class DiskMapIterator(file: File, blockId: BlockId, batchSizes: ArrayBuffer[Long])
    extends Iterator[(K, C)]
  {
    private val batchOffsets = batchSizes.scanLeft(0L)(_ + _)  // Size will be batchSize.length + 1
    assert(file.length() == batchOffsets.last,
      "File length is not equal to the last batch offset:\n" +
      s"    file length = ${file.length}\n" +
      s"    last batch offset = ${batchOffsets.last}\n" +
      s"    all batch offsets = ${batchOffsets.mkString(",")}"
    )

    private var batchIndex = 0  // Which batch we're in
    private var fileStream: FileInputStream = null

    // An intermediate stream that reads from exactly one batch
    // This guards against pre-fetching and other arbitrary behavior of higher level streams
    private var deserializeStream: DeserializationStream = null
    private var nextItem: (K, C) = null
    private var objectsRead = 0

    /**
     * Construct a stream that reads only from the next batch.
     */
    private def nextBatchStream(): DeserializationStream = {
      // Note that batchOffsets.length = numBatches + 1 since we did a scan above; check whether
      // we're still in a valid batch.
      if (batchIndex < batchOffsets.length - 1) {
        if (deserializeStream != null) {
          deserializeStream.close()
          fileStream.close()
          deserializeStream = null
          fileStream = null
        }

        val start = batchOffsets(batchIndex)
        fileStream = new FileInputStream(file)
        fileStream.getChannel.position(start)
        batchIndex += 1

        val end = batchOffsets(batchIndex)

        assert(end >= start, "start = " + start + ", end = " + end +
          ", batchOffsets = " + batchOffsets.mkString("[", ", ", "]"))

        val bufferedStream = new BufferedInputStream(ByteStreams.limit(fileStream, end - start))
        val wrappedStream = serializerManager.wrapStream(blockId, bufferedStream)
        ser.deserializeStream(wrappedStream)
      } else {
        // No more batches left
        cleanup()
        null
      }
    }

    /**
     * Return the next (K, C) pair from the deserialization stream.
     *
     * If the current batch is drained, construct a stream for the next batch and read from it.
     * If no more pairs are left, return null.
     */
    private def readNextItem(): (K, C) = {
      try {
        val k = deserializeStream.readKey().asInstanceOf[K]
        val c = deserializeStream.readValue().asInstanceOf[C]
        val item = (k, c)
        objectsRead += 1
        if (objectsRead == serializerBatchSize) {
          objectsRead = 0
          deserializeStream = nextBatchStream()
        }
        item
      } catch {
        case e: EOFException =>
          cleanup()
          null
      }
    }

    override def hasNext: Boolean = {
      if (nextItem == null) {
        if (deserializeStream == null) {
          // In case of deserializeStream has not been initialized
          deserializeStream = nextBatchStream()
          if (deserializeStream == null) {
            return false
          }
        }
        nextItem = readNextItem()
      }
      nextItem != null
    }

    override def next(): (K, C) = {
      if (!hasNext) {
        throw new NoSuchElementException
      }
      val item = nextItem
      nextItem = null
      item
    }

    private def cleanup(): Unit = {
      batchIndex = batchOffsets.length  // Prevent reading any other batch
      if (deserializeStream != null) {
        deserializeStream.close()
        deserializeStream = null
      }
      if (fileStream != null) {
        fileStream.close()
        fileStream = null
      }
      if (file.exists()) {
        if (!file.delete()) {
          logWarning(s"Error deleting ${file}")
        }
      }
    }

    context.addTaskCompletionListener[Unit](context => cleanup())
  }

  private class SpillableIterator(var upstream: Iterator[(K, C)])
    extends Iterator[(K, C)] {

    private val SPILL_LOCK = new Object()

    private var cur: (K, C) = readNext()

    private var hasSpilled: Boolean = false

    def spill(): Boolean = SPILL_LOCK.synchronized {
      if (hasSpilled) {
        false
      } else {
        logInfo(s"Task ${context.taskAttemptId} force spilling in-memory map to disk and " +
          s"it will release ${org.apache.spark.util.Utils.bytesToString(getUsed())} memory")
        val nextUpstream = spillMemoryIteratorToDisk(upstream)
        assert(!upstream.hasNext)
        hasSpilled = true
        upstream = nextUpstream
        true
      }
    }

    private def destroy(): Unit = {
      freeCurrentMap()
      upstream = Iterator.empty
    }

    def toCompletionIterator: CompletionIterator[(K, C), SpillableIterator] = {
      CompletionIterator[(K, C), SpillableIterator](this, this.destroy)
    }

    def readNext(): (K, C) = SPILL_LOCK.synchronized {
      if (upstream.hasNext) {
        upstream.next()
      } else {
        null
      }
    }

    override def hasNext(): Boolean = cur != null

    override def next(): (K, C) = {
      val r = cur
      cur = readNext()
      r
    }
  }

  /** Convenience function to hash the given (K, C) pair by the key. */
  private def hashKey(kc: (K, C)): Int = ExternalAppendOnlyMap.hash(kc._1)

  override def toString(): String = {
    this.getClass.getName + "@" + java.lang.Integer.toHexString(this.hashCode())
  }
}

private[spark] object ExternalAppendOnlyMap {

  /**
   * Return the hash code of the given object. If the object is null, return a special hash code.
   */
  private def hash[T](obj: T): Int = {
    if (obj == null) 0 else obj.hashCode()
  }

  /**
   * A comparator which sorts arbitrary keys based on their hash codes.
   */
  private class HashComparator[K] extends Comparator[K] {
    def compare(key1: K, key2: K): Int = {
      val hash1 = hash(key1)
      val hash2 = hash(key2)
      if (hash1 < hash2) -1 else if (hash1 == hash2) 0 else 1
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AppendOnlyMap 源码

spark BitSet 源码

spark CompactBuffer 源码

spark ExternalSorter 源码

spark ImmutableBitSet 源码

spark MedianHeap 源码

spark OpenHashMap 源码

spark OpenHashSet 源码

spark PairsWriter 源码

spark PartitionedAppendOnlyMap 源码

0  赞