spark TaskMetrics 源码

  • 2022-10-20
  • 浏览 (290)

spark TaskMetrics 代码

文件路径:/core/src/main/scala/org/apache/spark/executor/TaskMetrics.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.executor

import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, LinkedHashMap}

import org.apache.spark._
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.Tests.IS_TESTING
import org.apache.spark.scheduler.AccumulableInfo
import org.apache.spark.storage.{BlockId, BlockStatus}
import org.apache.spark.util._


/**
 * :: DeveloperApi ::
 * Metrics tracked during the execution of a task.
 *
 * This class is wrapper around a collection of internal accumulators that represent metrics
 * associated with a task. The local values of these accumulators are sent from the executor
 * to the driver when the task completes. These values are then merged into the corresponding
 * accumulator previously registered on the driver.
 *
 * The accumulator updates are also sent to the driver periodically (on executor heartbeat)
 * and when the task failed with an exception. The [[TaskMetrics]] object itself should never
 * be sent to the driver.
 */
@DeveloperApi
class TaskMetrics private[spark] () extends Serializable {
  // Each metric is internally represented as an accumulator
  private val _executorDeserializeTime = new LongAccumulator
  private val _executorDeserializeCpuTime = new LongAccumulator
  private val _executorRunTime = new LongAccumulator
  private val _executorCpuTime = new LongAccumulator
  private val _resultSize = new LongAccumulator
  private val _jvmGCTime = new LongAccumulator
  private val _resultSerializationTime = new LongAccumulator
  private val _memoryBytesSpilled = new LongAccumulator
  private val _diskBytesSpilled = new LongAccumulator
  private val _peakExecutionMemory = new LongAccumulator
  private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]

  /**
   * Time taken on the executor to deserialize this task.
   */
  def executorDeserializeTime: Long = _executorDeserializeTime.sum

  /**
   * CPU Time taken on the executor to deserialize this task in nanoseconds.
   */
  def executorDeserializeCpuTime: Long = _executorDeserializeCpuTime.sum

  /**
   * Time the executor spends actually running the task (including fetching shuffle data).
   */
  def executorRunTime: Long = _executorRunTime.sum

  /**
   * CPU Time the executor spends actually running the task
   * (including fetching shuffle data) in nanoseconds.
   */
  def executorCpuTime: Long = _executorCpuTime.sum

  /**
   * The number of bytes this task transmitted back to the driver as the TaskResult.
   */
  def resultSize: Long = _resultSize.sum

  /**
   * Amount of time the JVM spent in garbage collection while executing this task.
   */
  def jvmGCTime: Long = _jvmGCTime.sum

  /**
   * Amount of time spent serializing the task result.
   */
  def resultSerializationTime: Long = _resultSerializationTime.sum

  /**
   * The number of in-memory bytes spilled by this task.
   */
  def memoryBytesSpilled: Long = _memoryBytesSpilled.sum

  /**
   * The number of on-disk bytes spilled by this task.
   */
  def diskBytesSpilled: Long = _diskBytesSpilled.sum

  /**
   * Peak memory used by internal data structures created during shuffles, aggregations and
   * joins. The value of this accumulator should be approximately the sum of the peak sizes
   * across all such data structures created in this task. For SQL jobs, this only tracks all
   * unsafe operators and ExternalSort.
   */
  def peakExecutionMemory: Long = _peakExecutionMemory.sum

  /**
   * Storage statuses of any blocks that have been updated as a result of this task.
   *
   * Tracking the _updatedBlockStatuses can use a lot of memory.
   * It is not used anywhere inside of Spark so we would ideally remove it, but its exposed to
   * the user in SparkListenerTaskEnd so the api is kept for compatibility.
   * Tracking can be turned off to save memory via config
   * TASK_METRICS_TRACK_UPDATED_BLOCK_STATUSES.
   */
  def updatedBlockStatuses: Seq[(BlockId, BlockStatus)] = {
    // This is called on driver. All accumulator updates have a fixed value. So it's safe to use
    // `asScala` which accesses the internal values using `java.util.Iterator`.
    _updatedBlockStatuses.value.asScala.toSeq
  }

  // Setters and increment-ers
  private[spark] def setExecutorDeserializeTime(v: Long): Unit =
    _executorDeserializeTime.setValue(v)
  private[spark] def setExecutorDeserializeCpuTime(v: Long): Unit =
    _executorDeserializeCpuTime.setValue(v)
  private[spark] def setExecutorRunTime(v: Long): Unit = _executorRunTime.setValue(v)
  private[spark] def setExecutorCpuTime(v: Long): Unit = _executorCpuTime.setValue(v)
  private[spark] def setResultSize(v: Long): Unit = _resultSize.setValue(v)
  private[spark] def setJvmGCTime(v: Long): Unit = _jvmGCTime.setValue(v)
  private[spark] def setResultSerializationTime(v: Long): Unit =
    _resultSerializationTime.setValue(v)
  private[spark] def setPeakExecutionMemory(v: Long): Unit = _peakExecutionMemory.setValue(v)
  private[spark] def incMemoryBytesSpilled(v: Long): Unit = _memoryBytesSpilled.add(v)
  private[spark] def incDiskBytesSpilled(v: Long): Unit = _diskBytesSpilled.add(v)
  private[spark] def incPeakExecutionMemory(v: Long): Unit = _peakExecutionMemory.add(v)
  private[spark] def incUpdatedBlockStatuses(v: (BlockId, BlockStatus)): Unit =
    _updatedBlockStatuses.add(v)
  private[spark] def setUpdatedBlockStatuses(v: java.util.List[(BlockId, BlockStatus)]): Unit =
    _updatedBlockStatuses.setValue(v)
  private[spark] def setUpdatedBlockStatuses(v: Seq[(BlockId, BlockStatus)]): Unit =
    _updatedBlockStatuses.setValue(v.asJava)

  /**
   * Metrics related to reading data from a [[org.apache.spark.rdd.HadoopRDD]] or from persisted
   * data, defined only in tasks with input.
   */
  val inputMetrics: InputMetrics = new InputMetrics()

  /**
   * Metrics related to writing data externally (e.g. to a distributed filesystem),
   * defined only in tasks with output.
   */
  val outputMetrics: OutputMetrics = new OutputMetrics()

  /**
   * Metrics related to shuffle read aggregated across all shuffle dependencies.
   * This is defined only if there are shuffle dependencies in this task.
   */
  val shuffleReadMetrics: ShuffleReadMetrics = new ShuffleReadMetrics()

  /**
   * Metrics related to shuffle write, defined only in shuffle map stages.
   */
  val shuffleWriteMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics()

  /**
   * A list of [[TempShuffleReadMetrics]], one per shuffle dependency.
   *
   * A task may have multiple shuffle readers for multiple dependencies. To avoid synchronization
   * issues from readers in different threads, in-progress tasks use a [[TempShuffleReadMetrics]]
   * for each dependency and merge these metrics before reporting them to the driver.
   */
  @transient private lazy val tempShuffleReadMetrics = new ArrayBuffer[TempShuffleReadMetrics]

  /**
   * Create a [[TempShuffleReadMetrics]] for a particular shuffle dependency.
   *
   * All usages are expected to be followed by a call to [[mergeShuffleReadMetrics]], which
   * merges the temporary values synchronously. Otherwise, all temporary data collected will
   * be lost.
   */
  private[spark] def createTempShuffleReadMetrics(): TempShuffleReadMetrics = synchronized {
    val readMetrics = new TempShuffleReadMetrics
    tempShuffleReadMetrics += readMetrics
    readMetrics
  }

  /**
   * Merge values across all temporary [[ShuffleReadMetrics]] into `_shuffleReadMetrics`.
   * This is expected to be called on executor heartbeat and at the end of a task.
   */
  private[spark] def mergeShuffleReadMetrics(): Unit = synchronized {
    if (tempShuffleReadMetrics.nonEmpty) {
      shuffleReadMetrics.setMergeValues(tempShuffleReadMetrics.toSeq)
    }
  }

  // Only used for test
  private[spark] val testAccum = sys.props.get(IS_TESTING.key).map(_ => new LongAccumulator)


  import InternalAccumulator._
  @transient private[spark] lazy val nameToAccums = LinkedHashMap(
    EXECUTOR_DESERIALIZE_TIME -> _executorDeserializeTime,
    EXECUTOR_DESERIALIZE_CPU_TIME -> _executorDeserializeCpuTime,
    EXECUTOR_RUN_TIME -> _executorRunTime,
    EXECUTOR_CPU_TIME -> _executorCpuTime,
    RESULT_SIZE -> _resultSize,
    JVM_GC_TIME -> _jvmGCTime,
    RESULT_SERIALIZATION_TIME -> _resultSerializationTime,
    MEMORY_BYTES_SPILLED -> _memoryBytesSpilled,
    DISK_BYTES_SPILLED -> _diskBytesSpilled,
    PEAK_EXECUTION_MEMORY -> _peakExecutionMemory,
    UPDATED_BLOCK_STATUSES -> _updatedBlockStatuses,
    shuffleRead.REMOTE_BLOCKS_FETCHED -> shuffleReadMetrics._remoteBlocksFetched,
    shuffleRead.LOCAL_BLOCKS_FETCHED -> shuffleReadMetrics._localBlocksFetched,
    shuffleRead.REMOTE_BYTES_READ -> shuffleReadMetrics._remoteBytesRead,
    shuffleRead.REMOTE_BYTES_READ_TO_DISK -> shuffleReadMetrics._remoteBytesReadToDisk,
    shuffleRead.LOCAL_BYTES_READ -> shuffleReadMetrics._localBytesRead,
    shuffleRead.FETCH_WAIT_TIME -> shuffleReadMetrics._fetchWaitTime,
    shuffleRead.RECORDS_READ -> shuffleReadMetrics._recordsRead,
    shuffleWrite.BYTES_WRITTEN -> shuffleWriteMetrics._bytesWritten,
    shuffleWrite.RECORDS_WRITTEN -> shuffleWriteMetrics._recordsWritten,
    shuffleWrite.WRITE_TIME -> shuffleWriteMetrics._writeTime,
    input.BYTES_READ -> inputMetrics._bytesRead,
    input.RECORDS_READ -> inputMetrics._recordsRead,
    output.BYTES_WRITTEN -> outputMetrics._bytesWritten,
    output.RECORDS_WRITTEN -> outputMetrics._recordsWritten
  ) ++ testAccum.map(TEST_ACCUM -> _)

  @transient private[spark] lazy val internalAccums: Seq[AccumulatorV2[_, _]] =
    nameToAccums.values.toIndexedSeq

  /* ========================== *
   |        OTHER THINGS        |
   * ========================== */

  private[spark] def register(sc: SparkContext): Unit = {
    nameToAccums.foreach {
      case (name, acc) => acc.register(sc, name = Some(name), countFailedValues = true)
    }
  }

  /**
   * External accumulators registered with this task.
   */
  @transient private[spark] lazy val externalAccums = new ArrayBuffer[AccumulatorV2[_, _]]

  private[spark] def registerAccumulator(a: AccumulatorV2[_, _]): Unit = {
    externalAccums += a
  }

  private[spark] def accumulators(): Seq[AccumulatorV2[_, _]] = internalAccums ++ externalAccums

  private[spark] def nonZeroInternalAccums(): Seq[AccumulatorV2[_, _]] = {
    // RESULT_SIZE accumulator is always zero at executor, we need to send it back as its
    // value will be updated at driver side.
    internalAccums.filter(a => !a.isZero || a == _resultSize)
  }
}


private[spark] object TaskMetrics extends Logging {
  import InternalAccumulator._

  /**
   * Create an empty task metrics that doesn't register its accumulators.
   */
  def empty: TaskMetrics = {
    val tm = new TaskMetrics
    tm.nameToAccums.foreach { case (name, acc) =>
      acc.metadata = AccumulatorMetadata(AccumulatorContext.newId(), Some(name), true)
    }
    tm
  }

  def registered: TaskMetrics = {
    val tm = empty
    tm.internalAccums.foreach(AccumulatorContext.register)
    tm
  }

  /**
   * Construct a [[TaskMetrics]] object from a list of [[AccumulableInfo]], called on driver only.
   * The returned [[TaskMetrics]] is only used to get some internal metrics, we don't need to take
   * care of external accumulator info passed in.
   */
  def fromAccumulatorInfos(infos: Seq[AccumulableInfo]): TaskMetrics = {
    val tm = new TaskMetrics
    infos.filter(info => info.name.isDefined && info.update.isDefined).foreach { info =>
      val name = info.name.get
      val value = info.update.get
      if (name == UPDATED_BLOCK_STATUSES) {
        tm.setUpdatedBlockStatuses(value.asInstanceOf[java.util.List[(BlockId, BlockStatus)]])
      } else {
        tm.nameToAccums.get(name).foreach(
          _.asInstanceOf[LongAccumulator].setValue(value.asInstanceOf[Long])
        )
      }
    }
    tm
  }

  /**
   * Construct a [[TaskMetrics]] object from a list of accumulator updates, called on driver only.
   */
  def fromAccumulators(accums: Seq[AccumulatorV2[_, _]]): TaskMetrics = {
    val tm = new TaskMetrics
    for (acc <- accums) {
      val name = acc.name
      if (name.isDefined && tm.nameToAccums.contains(name.get)) {
        val tmAcc = tm.nameToAccums(name.get).asInstanceOf[AccumulatorV2[Any, Any]]
        tmAcc.metadata = acc.metadata
        tmAcc.merge(acc.asInstanceOf[AccumulatorV2[Any, Any]])
      } else {
        tm.externalAccums += acc
      }
    }
    tm
  }
}

相关信息

spark 源码目录

相关文章

spark CoarseGrainedExecutorBackend 源码

spark CommitDeniedException 源码

spark Executor 源码

spark ExecutorBackend 源码

spark ExecutorExitCode 源码

spark ExecutorLogUrlHandler 源码

spark ExecutorMetrics 源码

spark ExecutorMetricsPoller 源码

spark ExecutorMetricsSource 源码

spark ExecutorSource 源码

0  赞