spark ExecutorSource 源码

  • 2022-10-20
  • 浏览 (357)

spark ExecutorSource 代码

文件路径:/core/src/main/scala/org/apache/spark/executor/ExecutorSource.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.executor

import java.util.concurrent.ThreadPoolExecutor

import scala.collection.JavaConverters._

import com.codahale.metrics.{Gauge, MetricRegistry}
import org.apache.hadoop.fs.FileSystem

import org.apache.spark.metrics.source.Source

private[spark]
class ExecutorSource(
    threadPool: ThreadPoolExecutor,
    executorId: String,
    fileSystemSchemes: Array[String]) extends Source {

  private def fileStats(scheme: String) : Option[FileSystem.Statistics] =
    FileSystem.getAllStatistics.asScala.find(s => s.getScheme.equals(scheme))

  private def registerFileSystemStat[T](
        scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = {
    metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] {
      override def getValue: T = fileStats(scheme).map(f).getOrElse(defaultValue)
    })
  }

  override val metricRegistry = new MetricRegistry()

  override val sourceName = "executor"

  // Gauge for executor thread pool's actively executing task counts
  metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] {
    override def getValue: Int = threadPool.getActiveCount()
  })

  // Gauge for executor thread pool's approximate total number of tasks that have been completed
  metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] {
    override def getValue: Long = threadPool.getCompletedTaskCount()
  })

  // Gauge for executor, number of tasks started
  metricRegistry.register(MetricRegistry.name("threadpool", "startedTasks"), new Gauge[Long] {
    override def getValue: Long = threadPool.getTaskCount()
  })

  // Gauge for executor thread pool's current number of threads
  metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] {
    override def getValue: Int = threadPool.getPoolSize()
  })

  // Gauge got executor thread pool's largest number of threads that have ever simultaneously
  // been in th pool
  metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] {
    override def getValue: Int = threadPool.getMaximumPoolSize()
  })

  // Gauge for file system stats of this executor
  for (scheme <- fileSystemSchemes) {
    registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L)
    registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L)
    registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0)
    registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0)
    registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0)
  }

  // Expose executor task metrics using the Dropwizard metrics system.
  // The list of available Task metrics can be found in TaskMetrics.scala
  val SUCCEEDED_TASKS = metricRegistry.counter(MetricRegistry.name("succeededTasks"))
  val METRIC_CPU_TIME = metricRegistry.counter(MetricRegistry.name("cpuTime"))
  val METRIC_RUN_TIME = metricRegistry.counter(MetricRegistry.name("runTime"))
  val METRIC_JVM_GC_TIME = metricRegistry.counter(MetricRegistry.name("jvmGCTime"))
  val METRIC_DESERIALIZE_TIME =
    metricRegistry.counter(MetricRegistry.name("deserializeTime"))
  val METRIC_DESERIALIZE_CPU_TIME =
    metricRegistry.counter(MetricRegistry.name("deserializeCpuTime"))
  val METRIC_RESULT_SERIALIZE_TIME =
    metricRegistry.counter(MetricRegistry.name("resultSerializationTime"))
  val METRIC_SHUFFLE_FETCH_WAIT_TIME =
    metricRegistry.counter(MetricRegistry.name("shuffleFetchWaitTime"))
  val METRIC_SHUFFLE_WRITE_TIME =
    metricRegistry.counter(MetricRegistry.name("shuffleWriteTime"))
  val METRIC_SHUFFLE_TOTAL_BYTES_READ =
    metricRegistry.counter(MetricRegistry.name("shuffleTotalBytesRead"))
  val METRIC_SHUFFLE_REMOTE_BYTES_READ =
    metricRegistry.counter(MetricRegistry.name("shuffleRemoteBytesRead"))
  val METRIC_SHUFFLE_REMOTE_BYTES_READ_TO_DISK =
    metricRegistry.counter(MetricRegistry.name("shuffleRemoteBytesReadToDisk"))
  val METRIC_SHUFFLE_LOCAL_BYTES_READ =
    metricRegistry.counter(MetricRegistry.name("shuffleLocalBytesRead"))
  val METRIC_SHUFFLE_RECORDS_READ =
    metricRegistry.counter(MetricRegistry.name("shuffleRecordsRead"))
  val METRIC_SHUFFLE_REMOTE_BLOCKS_FETCHED =
    metricRegistry.counter(MetricRegistry.name("shuffleRemoteBlocksFetched"))
  val METRIC_SHUFFLE_LOCAL_BLOCKS_FETCHED =
    metricRegistry.counter(MetricRegistry.name("shuffleLocalBlocksFetched"))
  val METRIC_SHUFFLE_BYTES_WRITTEN =
    metricRegistry.counter(MetricRegistry.name("shuffleBytesWritten"))
  val METRIC_SHUFFLE_RECORDS_WRITTEN =
    metricRegistry.counter(MetricRegistry.name("shuffleRecordsWritten"))
  val METRIC_INPUT_BYTES_READ =
    metricRegistry.counter(MetricRegistry.name("bytesRead"))
  val METRIC_INPUT_RECORDS_READ =
    metricRegistry.counter(MetricRegistry.name("recordsRead"))
  val METRIC_OUTPUT_BYTES_WRITTEN =
    metricRegistry.counter(MetricRegistry.name("bytesWritten"))
  val METRIC_OUTPUT_RECORDS_WRITTEN =
    metricRegistry.counter(MetricRegistry.name("recordsWritten"))
  val METRIC_RESULT_SIZE =
    metricRegistry.counter(MetricRegistry.name("resultSize"))
  val METRIC_DISK_BYTES_SPILLED =
    metricRegistry.counter(MetricRegistry.name("diskBytesSpilled"))
  val METRIC_MEMORY_BYTES_SPILLED =
    metricRegistry.counter(MetricRegistry.name("memoryBytesSpilled"))
}

相关信息

spark 源码目录

相关文章

spark CoarseGrainedExecutorBackend 源码

spark CommitDeniedException 源码

spark Executor 源码

spark ExecutorBackend 源码

spark ExecutorExitCode 源码

spark ExecutorLogUrlHandler 源码

spark ExecutorMetrics 源码

spark ExecutorMetricsPoller 源码

spark ExecutorMetricsSource 源码

spark InputMetrics 源码

0  赞