spark ExecutorSource 源码
spark ExecutorSource 代码
文件路径:/core/src/main/scala/org/apache/spark/executor/ExecutorSource.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.executor
import java.util.concurrent.ThreadPoolExecutor
import scala.collection.JavaConverters._
import com.codahale.metrics.{Gauge, MetricRegistry}
import org.apache.hadoop.fs.FileSystem
import org.apache.spark.metrics.source.Source
private[spark]
class ExecutorSource(
threadPool: ThreadPoolExecutor,
executorId: String,
fileSystemSchemes: Array[String]) extends Source {
private def fileStats(scheme: String) : Option[FileSystem.Statistics] =
FileSystem.getAllStatistics.asScala.find(s => s.getScheme.equals(scheme))
private def registerFileSystemStat[T](
scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = {
metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] {
override def getValue: T = fileStats(scheme).map(f).getOrElse(defaultValue)
})
}
override val metricRegistry = new MetricRegistry()
override val sourceName = "executor"
// Gauge for executor thread pool's actively executing task counts
metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] {
override def getValue: Int = threadPool.getActiveCount()
})
// Gauge for executor thread pool's approximate total number of tasks that have been completed
metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] {
override def getValue: Long = threadPool.getCompletedTaskCount()
})
// Gauge for executor, number of tasks started
metricRegistry.register(MetricRegistry.name("threadpool", "startedTasks"), new Gauge[Long] {
override def getValue: Long = threadPool.getTaskCount()
})
// Gauge for executor thread pool's current number of threads
metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] {
override def getValue: Int = threadPool.getPoolSize()
})
// Gauge got executor thread pool's largest number of threads that have ever simultaneously
// been in th pool
metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] {
override def getValue: Int = threadPool.getMaximumPoolSize()
})
// Gauge for file system stats of this executor
for (scheme <- fileSystemSchemes) {
registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L)
registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L)
registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0)
registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0)
registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0)
}
// Expose executor task metrics using the Dropwizard metrics system.
// The list of available Task metrics can be found in TaskMetrics.scala
val SUCCEEDED_TASKS = metricRegistry.counter(MetricRegistry.name("succeededTasks"))
val METRIC_CPU_TIME = metricRegistry.counter(MetricRegistry.name("cpuTime"))
val METRIC_RUN_TIME = metricRegistry.counter(MetricRegistry.name("runTime"))
val METRIC_JVM_GC_TIME = metricRegistry.counter(MetricRegistry.name("jvmGCTime"))
val METRIC_DESERIALIZE_TIME =
metricRegistry.counter(MetricRegistry.name("deserializeTime"))
val METRIC_DESERIALIZE_CPU_TIME =
metricRegistry.counter(MetricRegistry.name("deserializeCpuTime"))
val METRIC_RESULT_SERIALIZE_TIME =
metricRegistry.counter(MetricRegistry.name("resultSerializationTime"))
val METRIC_SHUFFLE_FETCH_WAIT_TIME =
metricRegistry.counter(MetricRegistry.name("shuffleFetchWaitTime"))
val METRIC_SHUFFLE_WRITE_TIME =
metricRegistry.counter(MetricRegistry.name("shuffleWriteTime"))
val METRIC_SHUFFLE_TOTAL_BYTES_READ =
metricRegistry.counter(MetricRegistry.name("shuffleTotalBytesRead"))
val METRIC_SHUFFLE_REMOTE_BYTES_READ =
metricRegistry.counter(MetricRegistry.name("shuffleRemoteBytesRead"))
val METRIC_SHUFFLE_REMOTE_BYTES_READ_TO_DISK =
metricRegistry.counter(MetricRegistry.name("shuffleRemoteBytesReadToDisk"))
val METRIC_SHUFFLE_LOCAL_BYTES_READ =
metricRegistry.counter(MetricRegistry.name("shuffleLocalBytesRead"))
val METRIC_SHUFFLE_RECORDS_READ =
metricRegistry.counter(MetricRegistry.name("shuffleRecordsRead"))
val METRIC_SHUFFLE_REMOTE_BLOCKS_FETCHED =
metricRegistry.counter(MetricRegistry.name("shuffleRemoteBlocksFetched"))
val METRIC_SHUFFLE_LOCAL_BLOCKS_FETCHED =
metricRegistry.counter(MetricRegistry.name("shuffleLocalBlocksFetched"))
val METRIC_SHUFFLE_BYTES_WRITTEN =
metricRegistry.counter(MetricRegistry.name("shuffleBytesWritten"))
val METRIC_SHUFFLE_RECORDS_WRITTEN =
metricRegistry.counter(MetricRegistry.name("shuffleRecordsWritten"))
val METRIC_INPUT_BYTES_READ =
metricRegistry.counter(MetricRegistry.name("bytesRead"))
val METRIC_INPUT_RECORDS_READ =
metricRegistry.counter(MetricRegistry.name("recordsRead"))
val METRIC_OUTPUT_BYTES_WRITTEN =
metricRegistry.counter(MetricRegistry.name("bytesWritten"))
val METRIC_OUTPUT_RECORDS_WRITTEN =
metricRegistry.counter(MetricRegistry.name("recordsWritten"))
val METRIC_RESULT_SIZE =
metricRegistry.counter(MetricRegistry.name("resultSize"))
val METRIC_DISK_BYTES_SPILLED =
metricRegistry.counter(MetricRegistry.name("diskBytesSpilled"))
val METRIC_MEMORY_BYTES_SPILLED =
metricRegistry.counter(MetricRegistry.name("memoryBytesSpilled"))
}
相关信息
相关文章
spark CoarseGrainedExecutorBackend 源码
spark CommitDeniedException 源码
spark ExecutorLogUrlHandler 源码
spark ExecutorMetricsPoller 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦