spark ExecutorMetricsSource 源码

  • 2022-10-20
  • 浏览 (351)

spark ExecutorMetricsSource 代码

文件路径:/core/src/main/scala/org/apache/spark/executor/ExecutorMetricsSource.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.executor

import com.codahale.metrics.{Gauge, MetricRegistry}

import org.apache.spark.metrics.{ExecutorMetricType, MetricsSystem}
import org.apache.spark.metrics.source.Source

/**
 * Expose executor metrics from [[ExecutorMetricsType]] using the Dropwizard metrics system.
 *
 * Metrics related to the memory system can be expensive to gather, therefore
 * we implement some optimizations:
 * (1) Metrics values are cached, updated at each heartbeat (default period is 10 seconds).
 * An alternative faster polling mechanism is used, only if activated, by setting
 * spark.executor.metrics.pollingInterval=<interval in ms>.
 * (2) Procfs metrics are gathered all in one-go and only conditionally:
 * if the /proc filesystem exists
 * and spark.executor.processTreeMetrics.enabled=true.
 */
private[spark] class ExecutorMetricsSource extends Source {

  override val metricRegistry = new MetricRegistry()
  override val sourceName = "ExecutorMetrics"
  @volatile var metricsSnapshot: Array[Long] = Array.fill(ExecutorMetricType.numMetrics)(0L)

  // called by ExecutorMetricsPoller
  def updateMetricsSnapshot(metricsUpdates: Array[Long]): Unit = {
    metricsSnapshot = metricsUpdates
  }

  private class ExecutorMetricGauge(idx: Int) extends Gauge[Long] {
    def getValue: Long = metricsSnapshot(idx)
  }

  def register(metricsSystem: MetricsSystem): Unit = {
    val gauges: IndexedSeq[ExecutorMetricGauge] = (0 until ExecutorMetricType.numMetrics).map {
      idx => new ExecutorMetricGauge(idx)
    }

    ExecutorMetricType.metricToOffset.foreach {
      case (name, idx) =>
        metricRegistry.register(MetricRegistry.name(name), gauges(idx))
    }

    metricsSystem.registerSource(this)
  }
}

相关信息

spark 源码目录

相关文章

spark CoarseGrainedExecutorBackend 源码

spark CommitDeniedException 源码

spark Executor 源码

spark ExecutorBackend 源码

spark ExecutorExitCode 源码

spark ExecutorLogUrlHandler 源码

spark ExecutorMetrics 源码

spark ExecutorMetricsPoller 源码

spark ExecutorSource 源码

spark InputMetrics 源码

0  赞