spark FlatMapGroupsInPandasExec 源码
spark FlatMapGroupsInPandasExec 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/FlatMapGroupsInPandasExec.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.python
import org.apache.spark.api.python.{ChainedPythonFunctions, PythonEvalType}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.physical.{AllTuples, ClusteredDistribution, Distribution, Partitioning}
import org.apache.spark.sql.execution.{SparkPlan, UnaryExecNode}
import org.apache.spark.sql.execution.python.PandasGroupUtils._
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.ArrowUtils
/**
* Physical node for [[org.apache.spark.sql.catalyst.plans.logical.FlatMapGroupsInPandas]]
*
* Rows in each group are passed to the Python worker as an Arrow record batch.
* The Python worker turns the record batch to a `pandas.DataFrame`, invoke the
* user-defined function, and passes the resulting `pandas.DataFrame`
* as an Arrow record batch. Finally, each record batch is turned to
* Iterator[InternalRow] using ColumnarBatch.
*
* Note on memory usage:
* Both the Python worker and the Java executor need to have enough memory to
* hold the largest group. The memory on the Java side is used to construct the
* record batch (off heap memory). The memory on the Python side is used for
* holding the `pandas.DataFrame`. It's possible to further split one group into
* multiple record batches to reduce the memory footprint on the Java side, this
* is left as future work.
*/
case class FlatMapGroupsInPandasExec(
groupingAttributes: Seq[Attribute],
func: Expression,
output: Seq[Attribute],
child: SparkPlan)
extends SparkPlan with UnaryExecNode {
private val sessionLocalTimeZone = conf.sessionLocalTimeZone
private val pythonRunnerConf = ArrowUtils.getPythonRunnerConfMap(conf)
private val pandasFunction = func.asInstanceOf[PythonUDF].func
private val chainedFunc = Seq(ChainedPythonFunctions(Seq(pandasFunction)))
override def producedAttributes: AttributeSet = AttributeSet(output)
override def outputPartitioning: Partitioning = child.outputPartitioning
override def requiredChildDistribution: Seq[Distribution] = {
if (groupingAttributes.isEmpty) {
AllTuples :: Nil
} else {
ClusteredDistribution(groupingAttributes) :: Nil
}
}
override def requiredChildOrdering: Seq[Seq[SortOrder]] =
Seq(groupingAttributes.map(SortOrder(_, Ascending)))
override protected def doExecute(): RDD[InternalRow] = {
val inputRDD = child.execute()
val (dedupAttributes, argOffsets) = resolveArgOffsets(child.output, groupingAttributes)
// Map grouped rows to ArrowPythonRunner results, Only execute if partition is not empty
inputRDD.mapPartitionsInternal { iter => if (iter.isEmpty) iter else {
val data = groupAndProject(iter, groupingAttributes, child.output, dedupAttributes)
.map { case (_, x) => x }
val runner = new ArrowPythonRunner(
chainedFunc,
PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF,
Array(argOffsets),
StructType.fromAttributes(dedupAttributes),
sessionLocalTimeZone,
pythonRunnerConf)
executePython(data, output, runner)
}}
}
override protected def withNewChildInternal(newChild: SparkPlan): FlatMapGroupsInPandasExec =
copy(child = newChild)
}
相关信息
相关文章
spark AggregateInPandasExec 源码
spark ApplyInPandasWithStatePythonRunner 源码
spark ApplyInPandasWithStateWriter 源码
spark AttachDistributedSequenceExec 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦