spark AttachDistributedSequenceExec 源码

  • 2022-10-20
  • 浏览 (326)

spark AttachDistributedSequenceExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/AttachDistributedSequenceExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.python

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution.{SparkPlan, UnaryExecNode}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.storage.StorageLevel

/**
 * A physical plan that adds a new long column with `sequenceAttr` that
 * increases one by one. This is for 'distributed-sequence' default index
 * in pandas API on Spark.
 */
case class AttachDistributedSequenceExec(
    sequenceAttr: Attribute,
    child: SparkPlan)
  extends UnaryExecNode {

  override def producedAttributes: AttributeSet = AttributeSet(sequenceAttr)

  override val output: Seq[Attribute] = sequenceAttr +: child.output

  override def outputPartitioning: Partitioning = child.outputPartitioning

  @transient private var cached: RDD[InternalRow] = _

  override protected def doExecute(): RDD[InternalRow] = {
    val childRDD = child.execute()
    // before `compute.default_index_cache` is explicitly set via
    // `ps.set_option`, `SQLConf.get` can not get its value (as well as its default value);
    // after `ps.set_option`, `SQLConf.get` can get its value:
    //
    //    In [1]: import pyspark.pandas as ps
    //    In [2]: ps.get_option("compute.default_index_cache")
    //    Out[2]: 'MEMORY_AND_DISK_SER'
    //    In [3]: spark.conf.get("pandas_on_Spark.compute.default_index_cache")
    //    ...
    //    Py4JJavaError: An error occurred while calling o40.get.
    //      : java.util.NoSuchElementException: pandas_on_Spark.compute.distributed_sequence_...
    //    at org.apache.spark.sql.errors.QueryExecutionErrors$.noSuchElementExceptionError...
    //    at org.apache.spark.sql.internal.SQLConf.$anonfun$getConfString$3(SQLConf.scala:4766)
    //    ...
    //    In [4]: ps.set_option("compute.default_index_cache", "NONE")
    //    In [5]: spark.conf.get("pandas_on_Spark.compute.default_index_cache")
    //    Out[5]: '"NONE"'
    //    In [6]: ps.set_option("compute.default_index_cache", "DISK_ONLY")
    //    In [7]: spark.conf.get("pandas_on_Spark.compute.default_index_cache")
    //    Out[7]: '"DISK_ONLY"'

    // The string is double quoted because of JSON ser/deser for pandas API on Spark
    val storageLevel = SQLConf.get.getConfString(
      "pandas_on_Spark.compute.default_index_cache",
      "MEMORY_AND_DISK_SER"
    ).stripPrefix("\"").stripSuffix("\"")

    val cachedRDD = storageLevel match {
      // zipWithIndex launches a Spark job only if #partition > 1
      case _ if childRDD.getNumPartitions <= 1 => childRDD

      case "NONE" => childRDD

      case "LOCAL_CHECKPOINT" =>
        // localcheckpointing is unreliable so should not eagerly release it in 'cleanupResources'
        childRDD.map(_.copy()).localCheckpoint()
          .setName(s"Temporary RDD locally checkpointed in AttachDistributedSequenceExec($id)")

      case _ =>
        cached = childRDD.map(_.copy()).persist(StorageLevel.fromString(storageLevel))
          .setName(s"Temporary RDD cached in AttachDistributedSequenceExec($id)")
        cached
    }

    cachedRDD.zipWithIndex().mapPartitions { iter =>
      val unsafeProj = UnsafeProjection.create(output, output)
      val joinedRow = new JoinedRow
      val unsafeRowWriter =
        new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1)

      iter.map { case (row, id) =>
        // Writes to an UnsafeRow directly
        unsafeRowWriter.reset()
        unsafeRowWriter.write(0, id)
        joinedRow(unsafeRowWriter.getRow, row)
      }.map(unsafeProj)
    }
  }

  override protected[sql] def cleanupResources(): Unit = {
    try {
      if (cached != null && cached.getStorageLevel != StorageLevel.NONE) {
        logWarning(s"clean up cached RDD(${cached.id}) in AttachDistributedSequenceExec($id)")
        cached.unpersist(blocking = false)
      }
    } finally {
      super.cleanupResources()
    }
  }

  override protected def withNewChildInternal(newChild: SparkPlan): AttachDistributedSequenceExec =
    copy(child = newChild)

  override def simpleString(maxFields: Int): String = {
    val truncatedOutputString = truncatedString(output, "[", ", ", "]", maxFields)
    val indexColumn = s"Index: $sequenceAttr"
    s"$nodeName$truncatedOutputString $indexColumn"
  }
}

相关信息

spark 源码目录

相关文章

spark AggregateInPandasExec 源码

spark ApplyInPandasWithStatePythonRunner 源码

spark ApplyInPandasWithStateWriter 源码

spark ArrowEvalPythonExec 源码

spark ArrowPythonRunner 源码

spark BatchEvalPythonExec 源码

spark CoGroupedArrowPythonRunner 源码

spark EvalPythonExec 源码

spark EvaluatePython 源码

spark ExtractPythonUDFs 源码

0  赞