tidb rule_predicate_push_down 源码
tidb rule_predicate_push_down 代码
文件路径:/planner/core/rule_predicate_push_down.go
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"bytes"
"context"
"fmt"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/parser/ast"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/planner/util"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tidb/util/ranger"
"go.uber.org/zap"
)
type ppdSolver struct{}
// exprPrefixAdder is the wrapper struct to add tidb_shard(x) = val for `OrigConds`
// `cols` is the index columns for a unique shard index
type exprPrefixAdder struct {
sctx sessionctx.Context
OrigConds []expression.Expression
cols []*expression.Column
lengths []int
}
func (s *ppdSolver) optimize(_ context.Context, lp LogicalPlan, opt *logicalOptimizeOp) (LogicalPlan, error) {
_, p := lp.PredicatePushDown(nil, opt)
return p, nil
}
func addSelection(p LogicalPlan, child LogicalPlan, conditions []expression.Expression, chIdx int, opt *logicalOptimizeOp) {
if len(conditions) == 0 {
p.Children()[chIdx] = child
return
}
conditions = expression.PropagateConstant(p.SCtx(), conditions)
// Return table dual when filter is constant false or null.
dual := Conds2TableDual(child, conditions)
if dual != nil {
p.Children()[chIdx] = dual
appendTableDualTraceStep(child, dual, conditions, opt)
return
}
conditions = DeleteTrueExprs(p, conditions)
if len(conditions) == 0 {
p.Children()[chIdx] = child
return
}
selection := LogicalSelection{Conditions: conditions}.Init(p.SCtx(), p.SelectBlockOffset())
selection.SetChildren(child)
p.Children()[chIdx] = selection
appendAddSelectionTraceStep(p, child, selection, opt)
}
// PredicatePushDown implements LogicalPlan interface.
func (p *baseLogicalPlan) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
if len(p.children) == 0 {
return predicates, p.self
}
child := p.children[0]
rest, newChild := child.PredicatePushDown(predicates, opt)
addSelection(p.self, newChild, rest, 0, opt)
return nil, p.self
}
func splitSetGetVarFunc(filters []expression.Expression) ([]expression.Expression, []expression.Expression) {
canBePushDown := make([]expression.Expression, 0, len(filters))
canNotBePushDown := make([]expression.Expression, 0, len(filters))
for _, expr := range filters {
if expression.HasGetSetVarFunc(expr) {
canNotBePushDown = append(canNotBePushDown, expr)
} else {
canBePushDown = append(canBePushDown, expr)
}
}
return canBePushDown, canNotBePushDown
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalSelection) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
predicates = DeleteTrueExprs(p, predicates)
p.Conditions = DeleteTrueExprs(p, p.Conditions)
var child LogicalPlan
var retConditions []expression.Expression
var originConditions []expression.Expression
canBePushDown, canNotBePushDown := splitSetGetVarFunc(p.Conditions)
originConditions = canBePushDown
retConditions, child = p.children[0].PredicatePushDown(append(canBePushDown, predicates...), opt)
retConditions = append(retConditions, canNotBePushDown...)
if len(retConditions) > 0 {
p.Conditions = expression.PropagateConstant(p.ctx, retConditions)
// Return table dual when filter is constant false or null.
dual := Conds2TableDual(p, p.Conditions)
if dual != nil {
appendTableDualTraceStep(p, dual, p.Conditions, opt)
return nil, dual
}
return nil, p
}
appendSelectionPredicatePushDownTraceStep(p, originConditions, opt)
return nil, child
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalUnionScan) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
retainedPredicates, _ := p.children[0].PredicatePushDown(predicates, opt)
p.conditions = make([]expression.Expression, 0, len(predicates))
p.conditions = append(p.conditions, predicates...)
// The conditions in UnionScan is only used for added rows, so parent Selection should not be removed.
return retainedPredicates, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (ds *DataSource) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
predicates = expression.PropagateConstant(ds.ctx, predicates)
predicates = DeleteTrueExprs(ds, predicates)
// Add tidb_shard() prefix to the condtion for shard index in some scenarios
// TODO: remove it to the place building logical plan
predicates = ds.AddPrefix4ShardIndexes(ds.ctx, predicates)
ds.allConds = predicates
ds.pushedDownConds, predicates = expression.PushDownExprs(ds.ctx.GetSessionVars().StmtCtx, predicates, ds.ctx.GetClient(), kv.UnSpecified)
appendDataSourcePredicatePushDownTraceStep(ds, opt)
return predicates, ds
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalTableDual) PredicatePushDown(predicates []expression.Expression, _ *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
return predicates, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalJoin) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) (ret []expression.Expression, retPlan LogicalPlan) {
simplifyOuterJoin(p, predicates)
var equalCond []*expression.ScalarFunction
var leftPushCond, rightPushCond, otherCond, leftCond, rightCond []expression.Expression
switch p.JoinType {
case LeftOuterJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin:
predicates = p.outerJoinPropConst(predicates)
dual := Conds2TableDual(p, predicates)
if dual != nil {
appendTableDualTraceStep(p, dual, predicates, opt)
return ret, dual
}
// Handle where conditions
predicates = expression.ExtractFiltersFromDNFs(p.ctx, predicates)
// Only derive left where condition, because right where condition cannot be pushed down
equalCond, leftPushCond, rightPushCond, otherCond = p.extractOnCondition(predicates, true, false)
leftCond = leftPushCond
// Handle join conditions, only derive right join condition, because left join condition cannot be pushed down
_, derivedRightJoinCond := DeriveOtherConditions(
p, p.children[0].Schema(), p.children[1].Schema(), false, true)
rightCond = append(p.RightConditions, derivedRightJoinCond...)
p.RightConditions = nil
ret = append(expression.ScalarFuncs2Exprs(equalCond), otherCond...)
ret = append(ret, rightPushCond...)
case RightOuterJoin:
predicates = p.outerJoinPropConst(predicates)
dual := Conds2TableDual(p, predicates)
if dual != nil {
appendTableDualTraceStep(p, dual, predicates, opt)
return ret, dual
}
// Handle where conditions
predicates = expression.ExtractFiltersFromDNFs(p.ctx, predicates)
// Only derive right where condition, because left where condition cannot be pushed down
equalCond, leftPushCond, rightPushCond, otherCond = p.extractOnCondition(predicates, false, true)
rightCond = rightPushCond
// Handle join conditions, only derive left join condition, because right join condition cannot be pushed down
derivedLeftJoinCond, _ := DeriveOtherConditions(
p, p.children[0].Schema(), p.children[1].Schema(), true, false)
leftCond = append(p.LeftConditions, derivedLeftJoinCond...)
p.LeftConditions = nil
ret = append(expression.ScalarFuncs2Exprs(equalCond), otherCond...)
ret = append(ret, leftPushCond...)
case SemiJoin, InnerJoin:
tempCond := make([]expression.Expression, 0, len(p.LeftConditions)+len(p.RightConditions)+len(p.EqualConditions)+len(p.OtherConditions)+len(predicates))
tempCond = append(tempCond, p.LeftConditions...)
tempCond = append(tempCond, p.RightConditions...)
tempCond = append(tempCond, expression.ScalarFuncs2Exprs(p.EqualConditions)...)
tempCond = append(tempCond, p.OtherConditions...)
tempCond = append(tempCond, predicates...)
tempCond = expression.ExtractFiltersFromDNFs(p.ctx, tempCond)
tempCond = expression.PropagateConstant(p.ctx, tempCond)
// Return table dual when filter is constant false or null.
dual := Conds2TableDual(p, tempCond)
if dual != nil {
appendTableDualTraceStep(p, dual, tempCond, opt)
return ret, dual
}
equalCond, leftPushCond, rightPushCond, otherCond = p.extractOnCondition(tempCond, true, true)
p.LeftConditions = nil
p.RightConditions = nil
p.EqualConditions = equalCond
p.OtherConditions = otherCond
leftCond = leftPushCond
rightCond = rightPushCond
case AntiSemiJoin:
predicates = expression.PropagateConstant(p.ctx, predicates)
// Return table dual when filter is constant false or null.
dual := Conds2TableDual(p, predicates)
if dual != nil {
appendTableDualTraceStep(p, dual, predicates, opt)
return ret, dual
}
// `predicates` should only contain left conditions or constant filters.
_, leftPushCond, rightPushCond, _ = p.extractOnCondition(predicates, true, true)
// Do not derive `is not null` for anti join, since it may cause wrong results.
// For example:
// `select * from t t1 where t1.a not in (select b from t t2)` does not imply `t2.b is not null`,
// `select * from t t1 where t1.a not in (select a from t t2 where t1.b = t2.b` does not imply `t1.b is not null`,
// `select * from t t1 where not exists (select * from t t2 where t2.a = t1.a)` does not imply `t1.a is not null`,
leftCond = leftPushCond
rightCond = append(p.RightConditions, rightPushCond...)
p.RightConditions = nil
}
leftCond = expression.RemoveDupExprs(p.ctx, leftCond)
rightCond = expression.RemoveDupExprs(p.ctx, rightCond)
leftRet, lCh := p.children[0].PredicatePushDown(leftCond, opt)
rightRet, rCh := p.children[1].PredicatePushDown(rightCond, opt)
addSelection(p, lCh, leftRet, 0, opt)
addSelection(p, rCh, rightRet, 1, opt)
p.updateEQCond()
buildKeyInfo(p)
return ret, p.self
}
// updateEQCond will extract the arguments of a equal condition that connect two expressions.
func (p *LogicalJoin) updateEQCond() {
lChild, rChild := p.children[0], p.children[1]
var lKeys, rKeys []expression.Expression
for i := len(p.OtherConditions) - 1; i >= 0; i-- {
need2Remove := false
if eqCond, ok := p.OtherConditions[i].(*expression.ScalarFunction); ok && eqCond.FuncName.L == ast.EQ {
// If it is a column equal condition converted from `[not] in (subq)`, do not move it
// to EqualConditions, and keep it in OtherConditions. Reference comments in `extractOnCondition`
// for detailed reasons.
if expression.IsEQCondFromIn(eqCond) {
continue
}
lExpr, rExpr := eqCond.GetArgs()[0], eqCond.GetArgs()[1]
if expression.ExprFromSchema(lExpr, lChild.Schema()) && expression.ExprFromSchema(rExpr, rChild.Schema()) {
lKeys = append(lKeys, lExpr)
rKeys = append(rKeys, rExpr)
need2Remove = true
} else if expression.ExprFromSchema(lExpr, rChild.Schema()) && expression.ExprFromSchema(rExpr, lChild.Schema()) {
lKeys = append(lKeys, rExpr)
rKeys = append(rKeys, lExpr)
need2Remove = true
}
}
if need2Remove {
p.OtherConditions = append(p.OtherConditions[:i], p.OtherConditions[i+1:]...)
}
}
if len(lKeys) > 0 {
needLProj, needRProj := false, false
for i := range lKeys {
_, lOk := lKeys[i].(*expression.Column)
_, rOk := rKeys[i].(*expression.Column)
needLProj = needLProj || !lOk
needRProj = needRProj || !rOk
}
var lProj, rProj *LogicalProjection
if needLProj {
lProj = p.getProj(0)
}
if needRProj {
rProj = p.getProj(1)
}
for i := range lKeys {
lKey, rKey := lKeys[i], rKeys[i]
if lProj != nil {
lKey = lProj.appendExpr(lKey)
}
if rProj != nil {
rKey = rProj.appendExpr(rKey)
}
eqCond := expression.NewFunctionInternal(p.ctx, ast.EQ, types.NewFieldType(mysql.TypeTiny), lKey, rKey)
p.EqualConditions = append(p.EqualConditions, eqCond.(*expression.ScalarFunction))
}
}
}
func (p *LogicalProjection) appendExpr(expr expression.Expression) *expression.Column {
if col, ok := expr.(*expression.Column); ok {
return col
}
expr = expression.ColumnSubstitute(expr, p.schema, p.Exprs)
p.Exprs = append(p.Exprs, expr)
col := &expression.Column{
UniqueID: p.ctx.GetSessionVars().AllocPlanColumnID(),
RetType: expr.GetType().Clone(),
}
col.SetCoercibility(expr.Coercibility())
col.SetRepertoire(expr.Repertoire())
p.schema.Append(col)
// reset ParseToJSONFlag in order to keep the flag away from json column
if col.GetType().GetType() == mysql.TypeJSON {
col.GetType().DelFlag(mysql.ParseToJSONFlag)
}
return col
}
func (p *LogicalJoin) getProj(idx int) *LogicalProjection {
child := p.children[idx]
proj, ok := child.(*LogicalProjection)
if ok {
return proj
}
proj = LogicalProjection{Exprs: make([]expression.Expression, 0, child.Schema().Len())}.Init(p.ctx, child.SelectBlockOffset())
for _, col := range child.Schema().Columns {
proj.Exprs = append(proj.Exprs, col)
}
proj.SetSchema(child.Schema().Clone())
proj.SetChildren(child)
p.children[idx] = proj
return proj
}
// simplifyOuterJoin transforms "LeftOuterJoin/RightOuterJoin" to "InnerJoin" if possible.
func simplifyOuterJoin(p *LogicalJoin, predicates []expression.Expression) {
if p.JoinType != LeftOuterJoin && p.JoinType != RightOuterJoin && p.JoinType != InnerJoin {
return
}
innerTable := p.children[0]
outerTable := p.children[1]
if p.JoinType == LeftOuterJoin {
innerTable, outerTable = outerTable, innerTable
}
// first simplify embedded outer join.
if innerPlan, ok := innerTable.(*LogicalJoin); ok {
simplifyOuterJoin(innerPlan, predicates)
}
if outerPlan, ok := outerTable.(*LogicalJoin); ok {
simplifyOuterJoin(outerPlan, predicates)
}
if p.JoinType == InnerJoin {
return
}
// then simplify embedding outer join.
canBeSimplified := false
for _, expr := range predicates {
// avoid the case where the expr only refers to the schema of outerTable
if expression.ExprFromSchema(expr, outerTable.Schema()) {
continue
}
isOk := isNullRejected(p.ctx, innerTable.Schema(), expr)
if isOk {
canBeSimplified = true
break
}
}
if canBeSimplified {
p.JoinType = InnerJoin
}
}
// isNullRejected check whether a condition is null-rejected
// A condition would be null-rejected in one of following cases:
// If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN or FALSE when one of its arguments is NULL.
// If it is a conjunction containing a null-rejected condition as a conjunct.
// If it is a disjunction of null-rejected conditions.
func isNullRejected(ctx sessionctx.Context, schema *expression.Schema, expr expression.Expression) bool {
expr = expression.PushDownNot(ctx, expr)
if expression.ContainOuterNot(expr) {
return false
}
sc := ctx.GetSessionVars().StmtCtx
sc.InNullRejectCheck = true
result := expression.EvaluateExprWithNull(ctx, schema, expr)
sc.InNullRejectCheck = false
x, ok := result.(*expression.Constant)
if !ok {
return false
}
if x.Value.IsNull() {
return true
} else if isTrue, err := x.Value.ToBool(sc); err == nil && isTrue == 0 {
return true
}
return false
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalProjection) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) (ret []expression.Expression, retPlan LogicalPlan) {
canBePushed := make([]expression.Expression, 0, len(predicates))
canNotBePushed := make([]expression.Expression, 0, len(predicates))
for _, expr := range p.Exprs {
if expression.HasAssignSetVarFunc(expr) {
_, child := p.baseLogicalPlan.PredicatePushDown(nil, opt)
return predicates, child
}
}
if len(p.children) == 1 {
if _, isDual := p.children[0].(*LogicalTableDual); isDual {
return predicates, p
}
}
for _, cond := range predicates {
newFilter := expression.ColumnSubstitute(cond, p.Schema(), p.Exprs)
if !expression.HasGetSetVarFunc(newFilter) {
canBePushed = append(canBePushed, newFilter)
} else {
canNotBePushed = append(canNotBePushed, cond)
}
}
remained, child := p.baseLogicalPlan.PredicatePushDown(canBePushed, opt)
return append(remained, canNotBePushed...), child
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalUnionAll) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) (ret []expression.Expression, retPlan LogicalPlan) {
for i, proj := range p.children {
newExprs := make([]expression.Expression, 0, len(predicates))
newExprs = append(newExprs, predicates...)
retCond, newChild := proj.PredicatePushDown(newExprs, opt)
addSelection(p, newChild, retCond, i, opt)
}
return nil, p
}
// pushDownPredicatesForAggregation split a condition to two parts, can be pushed-down or can not be pushed-down below aggregation.
func (la *LogicalAggregation) pushDownPredicatesForAggregation(cond expression.Expression, groupByColumns *expression.Schema, exprsOriginal []expression.Expression) ([]expression.Expression, []expression.Expression) {
var condsToPush []expression.Expression
var ret []expression.Expression
switch cond.(type) {
case *expression.Constant:
condsToPush = append(condsToPush, cond)
// Consider SQL list "select sum(b) from t group by a having 1=0". "1=0" is a constant predicate which should be
// retained and pushed down at the same time. Because we will get a wrong query result that contains one column
// with value 0 rather than an empty query result.
ret = append(ret, cond)
case *expression.ScalarFunction:
extractedCols := expression.ExtractColumns(cond)
ok := true
for _, col := range extractedCols {
if !groupByColumns.Contains(col) {
ok = false
break
}
}
if ok {
newFunc := expression.ColumnSubstitute(cond, la.Schema(), exprsOriginal)
condsToPush = append(condsToPush, newFunc)
} else {
ret = append(ret, cond)
}
default:
ret = append(ret, cond)
}
return condsToPush, ret
}
// pushDownPredicatesForAggregation split a CNF condition to two parts, can be pushed-down or can not be pushed-down below aggregation.
// It would consider the CNF.
// For example,
// (a > 1 or avg(b) > 1) and (a < 3), and `avg(b) > 1` can't be pushed-down.
// Then condsToPush: a < 3, ret: a > 1 or avg(b) > 1
func (la *LogicalAggregation) pushDownCNFPredicatesForAggregation(cond expression.Expression, groupByColumns *expression.Schema, exprsOriginal []expression.Expression) ([]expression.Expression, []expression.Expression) {
var condsToPush []expression.Expression
var ret []expression.Expression
subCNFItem := expression.SplitCNFItems(cond)
if len(subCNFItem) == 1 {
return la.pushDownPredicatesForAggregation(subCNFItem[0], groupByColumns, exprsOriginal)
}
for _, item := range subCNFItem {
condsToPushForItem, retForItem := la.pushDownDNFPredicatesForAggregation(item, groupByColumns, exprsOriginal)
if len(condsToPushForItem) > 0 {
condsToPush = append(condsToPush, expression.ComposeDNFCondition(la.ctx, condsToPushForItem...))
}
if len(retForItem) > 0 {
ret = append(ret, expression.ComposeDNFCondition(la.ctx, retForItem...))
}
}
return condsToPush, ret
}
// pushDownDNFPredicatesForAggregation split a DNF condition to two parts, can be pushed-down or can not be pushed-down below aggregation.
// It would consider the DNF.
// For example,
// (a > 1 and avg(b) > 1) or (a < 3), and `avg(b) > 1` can't be pushed-down.
// Then condsToPush: (a < 3) and (a > 1), ret: (a > 1 and avg(b) > 1) or (a < 3)
func (la *LogicalAggregation) pushDownDNFPredicatesForAggregation(cond expression.Expression, groupByColumns *expression.Schema, exprsOriginal []expression.Expression) ([]expression.Expression, []expression.Expression) {
var condsToPush []expression.Expression
var ret []expression.Expression
subDNFItem := expression.SplitDNFItems(cond)
if len(subDNFItem) == 1 {
return la.pushDownPredicatesForAggregation(subDNFItem[0], groupByColumns, exprsOriginal)
}
for _, item := range subDNFItem {
condsToPushForItem, retForItem := la.pushDownCNFPredicatesForAggregation(item, groupByColumns, exprsOriginal)
if len(condsToPushForItem) > 0 {
condsToPush = append(condsToPush, expression.ComposeCNFCondition(la.ctx, condsToPushForItem...))
} else {
return nil, []expression.Expression{cond}
}
if len(retForItem) > 0 {
ret = append(ret, expression.ComposeCNFCondition(la.ctx, retForItem...))
}
}
if len(ret) == 0 {
// All the condition can be pushed down.
return []expression.Expression{cond}, nil
}
dnfPushDownCond := expression.ComposeDNFCondition(la.ctx, condsToPush...)
// Some condition can't be pushed down, we need to keep all the condition.
return []expression.Expression{dnfPushDownCond}, []expression.Expression{cond}
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (la *LogicalAggregation) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) (ret []expression.Expression, retPlan LogicalPlan) {
var condsToPush []expression.Expression
exprsOriginal := make([]expression.Expression, 0, len(la.AggFuncs))
for _, fun := range la.AggFuncs {
exprsOriginal = append(exprsOriginal, fun.Args[0])
}
groupByColumns := expression.NewSchema(la.GetGroupByCols()...)
// It's almost the same as pushDownCNFPredicatesForAggregation, except that the condition is a slice.
for _, cond := range predicates {
subCondsToPush, subRet := la.pushDownDNFPredicatesForAggregation(cond, groupByColumns, exprsOriginal)
if len(subCondsToPush) > 0 {
condsToPush = append(condsToPush, subCondsToPush...)
}
if len(subRet) > 0 {
ret = append(ret, subRet...)
}
}
la.baseLogicalPlan.PredicatePushDown(condsToPush, opt)
return ret, la
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalLimit) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
// Limit forbids any condition to push down.
p.baseLogicalPlan.PredicatePushDown(nil, opt)
return predicates, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalMaxOneRow) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
// MaxOneRow forbids any condition to push down.
p.baseLogicalPlan.PredicatePushDown(nil, opt)
return predicates, p
}
// DeriveOtherConditions given a LogicalJoin, check the OtherConditions to see if we can derive more
// conditions for left/right child pushdown.
func DeriveOtherConditions(
p *LogicalJoin, leftSchema *expression.Schema, rightSchema *expression.Schema,
deriveLeft bool, deriveRight bool) (
leftCond []expression.Expression, rightCond []expression.Expression) {
isOuterSemi := (p.JoinType == LeftOuterSemiJoin) || (p.JoinType == AntiLeftOuterSemiJoin)
for _, expr := range p.OtherConditions {
if deriveLeft {
leftRelaxedCond := expression.DeriveRelaxedFiltersFromDNF(expr, leftSchema)
if leftRelaxedCond != nil {
leftCond = append(leftCond, leftRelaxedCond)
}
notNullExpr := deriveNotNullExpr(expr, leftSchema)
if notNullExpr != nil {
leftCond = append(leftCond, notNullExpr)
}
}
if deriveRight {
rightRelaxedCond := expression.DeriveRelaxedFiltersFromDNF(expr, rightSchema)
if rightRelaxedCond != nil {
rightCond = append(rightCond, rightRelaxedCond)
}
// For LeftOuterSemiJoin and AntiLeftOuterSemiJoin, we can actually generate
// `col is not null` according to expressions in `OtherConditions` now, but we
// are putting column equal condition converted from `in (subq)` into
// `OtherConditions`(@sa https://github.com/pingcap/tidb/pull/9051), then it would
// cause wrong results, so we disable this optimization for outer semi joins now.
// TODO enable this optimization for outer semi joins later by checking whether
// condition in `OtherConditions` is converted from `in (subq)`.
if isOuterSemi {
continue
}
notNullExpr := deriveNotNullExpr(expr, rightSchema)
if notNullExpr != nil {
rightCond = append(rightCond, notNullExpr)
}
}
}
return
}
// deriveNotNullExpr generates a new expression `not(isnull(col))` given `col1 op col2`,
// in which `col` is in specified schema. Caller guarantees that only one of `col1` or
// `col2` is in schema.
func deriveNotNullExpr(expr expression.Expression, schema *expression.Schema) expression.Expression {
binop, ok := expr.(*expression.ScalarFunction)
if !ok || len(binop.GetArgs()) != 2 {
return nil
}
ctx := binop.GetCtx()
arg0, lOK := binop.GetArgs()[0].(*expression.Column)
arg1, rOK := binop.GetArgs()[1].(*expression.Column)
if !lOK || !rOK {
return nil
}
childCol := schema.RetrieveColumn(arg0)
if childCol == nil {
childCol = schema.RetrieveColumn(arg1)
}
if isNullRejected(ctx, schema, expr) && !mysql.HasNotNullFlag(childCol.RetType.GetFlag()) {
return expression.BuildNotNullExpr(ctx, childCol)
}
return nil
}
// Conds2TableDual builds a LogicalTableDual if cond is constant false or null.
func Conds2TableDual(p LogicalPlan, conds []expression.Expression) LogicalPlan {
if len(conds) != 1 {
return nil
}
con, ok := conds[0].(*expression.Constant)
if !ok {
return nil
}
sc := p.SCtx().GetSessionVars().StmtCtx
if expression.MaybeOverOptimized4PlanCache(p.SCtx(), []expression.Expression{con}) {
return nil
}
if isTrue, err := con.Value.ToBool(sc); (err == nil && isTrue == 0) || con.Value.IsNull() {
dual := LogicalTableDual{}.Init(p.SCtx(), p.SelectBlockOffset())
dual.SetSchema(p.Schema())
return dual
}
return nil
}
// DeleteTrueExprs deletes the surely true expressions
func DeleteTrueExprs(p LogicalPlan, conds []expression.Expression) []expression.Expression {
newConds := make([]expression.Expression, 0, len(conds))
for _, cond := range conds {
con, ok := cond.(*expression.Constant)
if !ok {
newConds = append(newConds, cond)
continue
}
if expression.MaybeOverOptimized4PlanCache(p.SCtx(), []expression.Expression{con}) {
newConds = append(newConds, cond)
continue
}
sc := p.SCtx().GetSessionVars().StmtCtx
if isTrue, err := con.Value.ToBool(sc); err == nil && isTrue == 1 {
continue
}
newConds = append(newConds, cond)
}
return newConds
}
// outerJoinPropConst propagates constant equal and column equal conditions over outer join.
func (p *LogicalJoin) outerJoinPropConst(predicates []expression.Expression) []expression.Expression {
outerTable := p.children[0]
innerTable := p.children[1]
if p.JoinType == RightOuterJoin {
innerTable, outerTable = outerTable, innerTable
}
lenJoinConds := len(p.EqualConditions) + len(p.LeftConditions) + len(p.RightConditions) + len(p.OtherConditions)
joinConds := make([]expression.Expression, 0, lenJoinConds)
for _, equalCond := range p.EqualConditions {
joinConds = append(joinConds, equalCond)
}
joinConds = append(joinConds, p.LeftConditions...)
joinConds = append(joinConds, p.RightConditions...)
joinConds = append(joinConds, p.OtherConditions...)
p.EqualConditions = nil
p.LeftConditions = nil
p.RightConditions = nil
p.OtherConditions = nil
nullSensitive := p.JoinType == AntiLeftOuterSemiJoin || p.JoinType == LeftOuterSemiJoin
joinConds, predicates = expression.PropConstOverOuterJoin(p.ctx, joinConds, predicates, outerTable.Schema(), innerTable.Schema(), nullSensitive)
p.AttachOnConds(joinConds)
return predicates
}
// GetPartitionByCols extracts 'partition by' columns from the Window.
func (p *LogicalWindow) GetPartitionByCols() []*expression.Column {
partitionCols := make([]*expression.Column, 0, len(p.PartitionBy))
for _, partitionItem := range p.PartitionBy {
partitionCols = append(partitionCols, partitionItem.Col)
}
return partitionCols
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalWindow) PredicatePushDown(predicates []expression.Expression, opt *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
canBePushed := make([]expression.Expression, 0, len(predicates))
canNotBePushed := make([]expression.Expression, 0, len(predicates))
partitionCols := expression.NewSchema(p.GetPartitionByCols()...)
for _, cond := range predicates {
// We can push predicate beneath Window, only if all of the
// extractedCols are part of partitionBy columns.
if expression.ExprFromSchema(cond, partitionCols) {
canBePushed = append(canBePushed, cond)
} else {
canNotBePushed = append(canNotBePushed, cond)
}
}
p.baseLogicalPlan.PredicatePushDown(canBePushed, opt)
return canNotBePushed, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalMemTable) PredicatePushDown(predicates []expression.Expression, _ *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
if p.Extractor != nil {
predicates = p.Extractor.Extract(p.ctx, p.schema, p.names, predicates)
}
return predicates, p.self
}
func (*ppdSolver) name() string {
return "predicate_push_down"
}
func appendTableDualTraceStep(replaced LogicalPlan, dual LogicalPlan, conditions []expression.Expression, opt *logicalOptimizeOp) {
action := func() string {
return fmt.Sprintf("%v_%v is replaced by %v_%v", replaced.TP(), replaced.ID(), dual.TP(), dual.ID())
}
reason := func() string {
buffer := bytes.NewBufferString("The conditions[")
for i, cond := range conditions {
if i > 0 {
buffer.WriteString(",")
}
buffer.WriteString(cond.String())
}
buffer.WriteString("] are constant false or null")
return buffer.String()
}
opt.appendStepToCurrent(dual.ID(), dual.TP(), reason, action)
}
func appendSelectionPredicatePushDownTraceStep(p *LogicalSelection, conditions []expression.Expression, opt *logicalOptimizeOp) {
action := func() string {
return fmt.Sprintf("%v_%v is removed", p.TP(), p.ID())
}
reason := func() string {
return ""
}
if len(conditions) > 0 {
reason = func() string {
buffer := bytes.NewBufferString("The conditions[")
for i, cond := range conditions {
if i > 0 {
buffer.WriteString(",")
}
buffer.WriteString(cond.String())
}
buffer.WriteString(fmt.Sprintf("] in %v_%v are pushed down", p.TP(), p.ID()))
return buffer.String()
}
}
opt.appendStepToCurrent(p.ID(), p.TP(), reason, action)
}
func appendDataSourcePredicatePushDownTraceStep(ds *DataSource, opt *logicalOptimizeOp) {
if len(ds.pushedDownConds) < 1 {
return
}
reason := func() string {
return ""
}
action := func() string {
buffer := bytes.NewBufferString("The conditions[")
for i, cond := range ds.pushedDownConds {
if i > 0 {
buffer.WriteString(",")
}
buffer.WriteString(cond.String())
}
buffer.WriteString(fmt.Sprintf("] are pushed down across %v_%v", ds.TP(), ds.ID()))
return buffer.String()
}
opt.appendStepToCurrent(ds.ID(), ds.TP(), reason, action)
}
func appendAddSelectionTraceStep(p LogicalPlan, child LogicalPlan, sel *LogicalSelection, opt *logicalOptimizeOp) {
reason := func() string {
return ""
}
action := func() string {
return fmt.Sprintf("add %v_%v to connect %v_%v and %v_%v", sel.TP(), sel.ID(), p.TP(), p.ID(), child.TP(), child.ID())
}
opt.appendStepToCurrent(sel.ID(), sel.TP(), reason, action)
}
// AddPrefix4ShardIndexes add expression prefix for shard index. e.g. an index is test.uk(tidb_shard(a), a).
// It transforms the sql "SELECT * FROM test WHERE a = 10" to
// "SELECT * FROM test WHERE tidb_shard(a) = val AND a = 10", val is the value of tidb_shard(10).
// It also transforms the sql "SELECT * FROM test WHERE a IN (10, 20, 30)" to
// "SELECT * FROM test WHERE tidb_shard(a) = val1 AND a = 10 OR tidb_shard(a) = val2 AND a = 20"
// @param[in] conds the original condtion of this datasource
// @retval - the new condition after adding expression prefix
func (ds *DataSource) AddPrefix4ShardIndexes(sc sessionctx.Context, conds []expression.Expression) []expression.Expression {
if !ds.containExprPrefixUk {
return conds
}
var err error
newConds := conds
for _, path := range ds.possibleAccessPaths {
if !path.IsUkShardIndexPath {
continue
}
newConds, err = ds.addExprPrefixCond(sc, path, newConds)
if err != nil {
logutil.BgLogger().Error("Add tidb_shard expression failed",
zap.Error(err),
zap.Uint64("connection id", sc.GetSessionVars().ConnectionID),
zap.String("database name", ds.DBName.L),
zap.String("table name", ds.tableInfo.Name.L),
zap.String("index name", path.Index.Name.L))
return conds
}
}
return newConds
}
func (ds *DataSource) addExprPrefixCond(sc sessionctx.Context, path *util.AccessPath,
conds []expression.Expression) ([]expression.Expression, error) {
IdxCols, IdxColLens :=
expression.IndexInfo2PrefixCols(ds.Columns, ds.schema.Columns, path.Index)
if len(IdxCols) == 0 {
return conds, nil
}
adder := &exprPrefixAdder{
sctx: sc,
OrigConds: conds,
cols: IdxCols,
lengths: IdxColLens,
}
return adder.addExprPrefix4ShardIndex()
}
// AddExprPrefix4ShardIndex
// if original condition is a LogicOr expression, such as `WHERE a = 1 OR a = 10`,
// call the function AddExprPrefix4DNFCond to add prefix expression tidb_shard(a) = xxx for shard index.
// Otherwise, if the condition is `WHERE a = 1`, `WHERE a = 1 AND b = 10`, `WHERE a IN (1, 2, 3)`......,
// call the function AddExprPrefix4CNFCond to add prefix expression for shard index.
func (adder *exprPrefixAdder) addExprPrefix4ShardIndex() ([]expression.Expression, error) {
if len(adder.OrigConds) == 1 {
if sf, ok := adder.OrigConds[0].(*expression.ScalarFunction); ok && sf.FuncName.L == ast.LogicOr {
return adder.addExprPrefix4DNFCond(sf)
}
}
return adder.addExprPrefix4CNFCond(adder.OrigConds)
}
// AddExprPrefix4CNFCond
// add the prefix expression for CNF condition, e.g. `WHERE a = 1`, `WHERE a = 1 AND b = 10`, ......
// @param[in] conds the original condtion of the datasoure. e.g. `WHERE t1.a = 1 AND t1.b = 10 AND t2.a = 20`.
//
// if current datasource is `t1`, conds is {t1.a = 1, t1.b = 10}. if current datasource is
// `t2`, conds is {t2.a = 20}
//
// @return - the new condition after adding expression prefix
func (adder *exprPrefixAdder) addExprPrefix4CNFCond(conds []expression.Expression) ([]expression.Expression, error) {
newCondtionds, err := ranger.AddExpr4EqAndInCondition(adder.sctx,
conds, adder.cols)
return newCondtionds, err
}
// AddExprPrefix4DNFCond
// add the prefix expression for DNF condition, e.g. `WHERE a = 1 OR a = 10`, ......
// The condition returned is `WHERE (tidb_shard(a) = 214 AND a = 1) OR (tidb_shard(a) = 142 AND a = 10)`
// @param[in] condition the original condtion of the datasoure. e.g. `WHERE a = 1 OR a = 10`. condtion is `a = 1 OR a = 10`
// @return - the new condition after adding expression prefix. It's still a LogicOr expression.
func (adder *exprPrefixAdder) addExprPrefix4DNFCond(condition *expression.ScalarFunction) ([]expression.Expression, error) {
var err error
dnfItems := expression.FlattenDNFConditions(condition)
newAccessItems := make([]expression.Expression, 0, len(dnfItems))
for _, item := range dnfItems {
if sf, ok := item.(*expression.ScalarFunction); ok {
var accesses []expression.Expression
if sf.FuncName.L == ast.LogicAnd {
cnfItems := expression.FlattenCNFConditions(sf)
accesses, err = adder.addExprPrefix4CNFCond(cnfItems)
if err != nil {
return []expression.Expression{condition}, err
}
newAccessItems = append(newAccessItems, expression.ComposeCNFCondition(adder.sctx, accesses...))
} else if sf.FuncName.L == ast.EQ || sf.FuncName.L == ast.In {
// only add prefix expression for EQ or IN function
accesses, err = adder.addExprPrefix4CNFCond([]expression.Expression{sf})
if err != nil {
return []expression.Expression{condition}, err
}
newAccessItems = append(newAccessItems, expression.ComposeCNFCondition(adder.sctx, accesses...))
} else {
newAccessItems = append(newAccessItems, item)
}
} else {
newAccessItems = append(newAccessItems, item)
}
}
return []expression.Expression{expression.ComposeDNFCondition(adder.sctx, newAccessItems...)}, nil
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalCTE) PredicatePushDown(predicates []expression.Expression, _ *logicalOptimizeOp) ([]expression.Expression, LogicalPlan) {
if p.cte.recursivePartLogicalPlan != nil {
// Doesn't support recursive CTE yet.
return predicates, p.self
}
if !p.isOuterMostCTE {
return predicates, p.self
}
if len(predicates) == 0 {
p.cte.pushDownPredicates = append(p.cte.pushDownPredicates, expression.NewOne())
return predicates, p.self
}
newPred := make([]expression.Expression, 0, len(predicates))
for i := range predicates {
newPred = append(newPred, predicates[i].Clone())
ResolveExprAndReplace(newPred[i], p.cte.ColumnMap)
}
p.cte.pushDownPredicates = append(p.cte.pushDownPredicates, expression.ComposeCNFCondition(p.ctx, newPred...))
return predicates, p.self
}
相关信息
相关文章
tidb collect_column_stats_usage 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦