spark StreamingContext 源码

  • 2022-10-20
  • 浏览 (260)

spark StreamingContext 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming

import java.io.{InputStream, NotSerializableException}
import java.util.Properties
import java.util.concurrent.atomic.{AtomicInteger, AtomicReference}

import scala.collection.Map
import scala.collection.mutable.Queue
import scala.reflect.ClassTag
import scala.util.control.NonFatal

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{BytesWritable, LongWritable, Text}
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat}
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat

import org.apache.spark._
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.input.FixedLengthBinaryInputFormat
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.{RDD, RDDOperationScope}
import org.apache.spark.scheduler.LiveListenerBus
import org.apache.spark.serializer.SerializationDebugger
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.StreamingConf.STOP_GRACEFULLY_ON_SHUTDOWN
import org.apache.spark.streaming.StreamingContextState._
import org.apache.spark.streaming.dstream._
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.scheduler.
    {ExecutorAllocationManager, JobScheduler, StreamingListener, StreamingListenerStreamingStarted}
import org.apache.spark.streaming.ui.{StreamingJobProgressListener, StreamingTab}
import org.apache.spark.util.{CallSite, ShutdownHookManager, ThreadUtils, Utils}

/**
 * Main entry point for Spark Streaming functionality. It provides methods used to create
 * [[org.apache.spark.streaming.dstream.DStream]]s from various input sources. It can be either
 * created by providing a Spark master URL and an appName, or from a org.apache.spark.SparkConf
 * configuration (see core Spark documentation), or from an existing org.apache.spark.SparkContext.
 * The associated SparkContext can be accessed using `context.sparkContext`. After
 * creating and transforming DStreams, the streaming computation can be started and stopped
 * using `context.start()` and `context.stop()`, respectively.
 * `context.awaitTermination()` allows the current thread to wait for the termination
 * of the context by `stop()` or by an exception.
 */
class StreamingContext private[streaming] (
    _sc: SparkContext,
    _cp: Checkpoint,
    _batchDur: Duration
  ) extends Logging {

  /**
   * Create a StreamingContext using an existing SparkContext.
   * @param sparkContext existing SparkContext
   * @param batchDuration the time interval at which streaming data will be divided into batches
   */
  def this(sparkContext: SparkContext, batchDuration: Duration) = {
    this(sparkContext, null, batchDuration)
  }

  /**
   * Create a StreamingContext by providing the configuration necessary for a new SparkContext.
   * @param conf a org.apache.spark.SparkConf object specifying Spark parameters
   * @param batchDuration the time interval at which streaming data will be divided into batches
   */
  def this(conf: SparkConf, batchDuration: Duration) = {
    this(StreamingContext.createNewSparkContext(conf), null, batchDuration)
  }

  /**
   * Create a StreamingContext by providing the details necessary for creating a new SparkContext.
   * @param master cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
   * @param appName a name for your job, to display on the cluster web UI
   * @param batchDuration the time interval at which streaming data will be divided into batches
   */
  def this(
      master: String,
      appName: String,
      batchDuration: Duration,
      sparkHome: String = null,
      jars: Seq[String] = Nil,
      environment: Map[String, String] = Map()) = {
    this(StreamingContext.createNewSparkContext(master, appName, sparkHome, jars, environment),
         null, batchDuration)
  }

  /**
   * Recreate a StreamingContext from a checkpoint file.
   * @param path Path to the directory that was specified as the checkpoint directory
   * @param hadoopConf Optional, configuration object if necessary for reading from
   *                   HDFS compatible filesystems
   */
  def this(path: String, hadoopConf: Configuration) =
    this(null, CheckpointReader.read(path, new SparkConf(), hadoopConf).orNull, null)

  /**
   * Recreate a StreamingContext from a checkpoint file.
   * @param path Path to the directory that was specified as the checkpoint directory
   */
  def this(path: String) = this(path, SparkHadoopUtil.get.conf)

  /**
   * Recreate a StreamingContext from a checkpoint file using an existing SparkContext.
   * @param path Path to the directory that was specified as the checkpoint directory
   * @param sparkContext Existing SparkContext
   */
  def this(path: String, sparkContext: SparkContext) = {
    this(
      sparkContext,
      CheckpointReader.read(path, sparkContext.conf, sparkContext.hadoopConfiguration).orNull,
      null)
  }

  require(_sc != null || _cp != null,
    "Spark Streaming cannot be initialized with both SparkContext and checkpoint as null")

  private[streaming] val isCheckpointPresent: Boolean = _cp != null

  private[streaming] val sc: SparkContext = {
    if (_sc != null) {
      _sc
    } else if (isCheckpointPresent) {
      SparkContext.getOrCreate(_cp.createSparkConf())
    } else {
      throw new SparkException("Cannot create StreamingContext without a SparkContext")
    }
  }

  if (sc.conf.get("spark.master") == "local" || sc.conf.get("spark.master") == "local[1]") {
    logWarning("spark.master should be set as local[n], n > 1 in local mode if you have receivers" +
      " to get data, otherwise Spark jobs will not get resources to process the received data.")
  }

  private[streaming] val conf = sc.conf

  private[streaming] val env = sc.env

  private[streaming] val graph: DStreamGraph = {
    if (isCheckpointPresent) {
      _cp.graph.setContext(this)
      _cp.graph.restoreCheckpointData()
      _cp.graph
    } else {
      require(_batchDur != null, "Batch duration for StreamingContext cannot be null")
      val newGraph = new DStreamGraph()
      newGraph.setBatchDuration(_batchDur)
      newGraph
    }
  }

  private val nextInputStreamId = new AtomicInteger(0)

  private[streaming] var checkpointDir: String = {
    if (isCheckpointPresent) {
      sc.setCheckpointDir(_cp.checkpointDir)
      _cp.checkpointDir
    } else {
      null
    }
  }

  private[streaming] val checkpointDuration: Duration = {
    if (isCheckpointPresent) _cp.checkpointDuration else graph.batchDuration
  }

  private[streaming] val scheduler = new JobScheduler(this)

  private[streaming] val waiter = new ContextWaiter

  private[streaming] val progressListener = new StreamingJobProgressListener(this)

  private[streaming] val uiTab: Option[StreamingTab] =
    sparkContext.ui match {
      case Some(ui) => Some(new StreamingTab(this, ui))
      case None => None
    }

  /* Initializing a streamingSource to register metrics */
  private val streamingSource = new StreamingSource(this)

  private var state: StreamingContextState = INITIALIZED

  private val startSite = new AtomicReference[CallSite](null)

  // Copy of thread-local properties from SparkContext. These properties will be set in all tasks
  // submitted by this StreamingContext after start.
  private[streaming] val savedProperties = new AtomicReference[Properties](new Properties)

  private[streaming] def getStartSite(): CallSite = startSite.get()

  private var shutdownHookRef: AnyRef = _

  conf.getOption("spark.streaming.checkpoint.directory").foreach(checkpoint)

  /**
   * Return the associated Spark context
   */
  def sparkContext: SparkContext = sc

  /**
   * Set each DStream in this context to remember RDDs it generated in the last given duration.
   * DStreams remember RDDs only for a limited duration of time and release them for garbage
   * collection. This method allows the developer to specify how long to remember the RDDs (
   * if the developer wishes to query old data outside the DStream computation).
   * @param duration Minimum duration that each DStream should remember its RDDs
   */
  def remember(duration: Duration): Unit = {
    graph.remember(duration)
  }

  /**
   * Set the context to periodically checkpoint the DStream operations for driver
   * fault-tolerance.
   * @param directory HDFS-compatible directory where the checkpoint data will be reliably stored.
   *                  Note that this must be a fault-tolerant file system like HDFS.
   */
  def checkpoint(directory: String): Unit = {
    if (directory != null) {
      val path = new Path(directory)
      val fs = path.getFileSystem(sparkContext.hadoopConfiguration)
      fs.mkdirs(path)
      val fullPath = fs.getFileStatus(path).getPath().toString
      sc.setCheckpointDir(fullPath)
      checkpointDir = fullPath
    } else {
      checkpointDir = null
    }
  }

  private[streaming] def isCheckpointingEnabled: Boolean = {
    checkpointDir != null
  }

  private[streaming] def initialCheckpoint: Checkpoint = {
    if (isCheckpointPresent) _cp else null
  }

  private[streaming] def getNewInputStreamId() = nextInputStreamId.getAndIncrement()

  /**
   * Execute a block of code in a scope such that all new DStreams created in this body will
   * be part of the same scope. For more detail, see the comments in `doCompute`.
   *
   * Note: Return statements are NOT allowed in the given body.
   */
  private[streaming] def withScope[U](body: => U): U = sparkContext.withScope(body)

  /**
   * Execute a block of code in a scope such that all new DStreams created in this body will
   * be part of the same scope. For more detail, see the comments in `doCompute`.
   *
   * Note: Return statements are NOT allowed in the given body.
   */
  private[streaming] def withNamedScope[U](name: String)(body: => U): U = {
    RDDOperationScope.withScope(sc, name, allowNesting = false, ignoreParent = false)(body)
  }

  /**
   * Create an input stream with any arbitrary user implemented receiver.
   * Find more details at https://spark.apache.org/docs/latest/streaming-custom-receivers.html
   * @param receiver Custom implementation of Receiver
   */
  def receiverStream[T: ClassTag](receiver: Receiver[T]): ReceiverInputDStream[T] = {
    withNamedScope("receiver stream") {
      new PluggableInputDStream[T](this, receiver)
    }
  }

  /**
   * Creates an input stream from TCP source hostname:port. Data is received using
   * a TCP socket and the receive bytes is interpreted as UTF8 encoded `\n` delimited
   * lines.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param storageLevel  Storage level to use for storing the received objects
   *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
   * @see [[socketStream]]
   */
  def socketTextStream(
      hostname: String,
      port: Int,
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
    ): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
    socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
  }

  /**
   * Creates an input stream from TCP source hostname:port. Data is received using
   * a TCP socket and the receive bytes it interpreted as object using the given
   * converter.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param converter     Function to convert the byte stream to objects
   * @param storageLevel  Storage level to use for storing the received objects
   * @tparam T            Type of the objects received (after converting bytes to objects)
   */
  def socketStream[T: ClassTag](
      hostname: String,
      port: Int,
      converter: (InputStream) => Iterator[T],
      storageLevel: StorageLevel
    ): ReceiverInputDStream[T] = {
    new SocketInputDStream[T](this, hostname, port, converter, storageLevel)
  }

  /**
   * Create an input stream from network source hostname:port, where data is received
   * as serialized blocks (serialized using the Spark's serializer) that can be directly
   * pushed into the block manager without deserializing them. This is the most efficient
   * way to receive data.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param storageLevel  Storage level to use for storing the received objects
   *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
   * @tparam T            Type of the objects in the received blocks
   */
  def rawSocketStream[T: ClassTag](
      hostname: String,
      port: Int,
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
    ): ReceiverInputDStream[T] = withNamedScope("raw socket stream") {
    new RawInputDStream[T](this, hostname, port, storageLevel)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[
    K: ClassTag,
    V: ClassTag,
    F <: NewInputFormat[K, V]: ClassTag
  ] (directory: String): InputDStream[(K, V)] = {
    new FileInputDStream[K, V, F](this, directory)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system.
   * @param directory HDFS directory to monitor for new file
   * @param filter Function to filter paths to process
   * @param newFilesOnly Should process only new files and ignore existing files in the directory
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[
    K: ClassTag,
    V: ClassTag,
    F <: NewInputFormat[K, V]: ClassTag
  ] (directory: String, filter: Path => Boolean, newFilesOnly: Boolean): InputDStream[(K, V)] = {
    new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @param filter Function to filter paths to process
   * @param newFilesOnly Should process only new files and ignore existing files in the directory
   * @param conf Hadoop configuration
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[
    K: ClassTag,
    V: ClassTag,
    F <: NewInputFormat[K, V]: ClassTag
  ] (directory: String,
     filter: Path => Boolean,
     newFilesOnly: Boolean,
     conf: Configuration): InputDStream[(K, V)] = {
    new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly, Option(conf))
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them as text files (using key as LongWritable, value
   * as Text and input format as TextInputFormat). Files must be written to the
   * monitored directory by "moving" them from another location within the same
   * file system. File names starting with . are ignored.
   * The text files must be encoded as UTF-8.
   *
   * @param directory HDFS directory to monitor for new file
   */
  def textFileStream(directory: String): DStream[String] = withNamedScope("text file stream") {
    fileStream[LongWritable, Text, TextInputFormat](directory).map(_._2.toString)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them as flat binary files, assuming a fixed length per record,
   * generating one byte array per record. Files must be written to the monitored directory
   * by "moving" them from another location within the same file system. File names
   * starting with . are ignored.
   *
   * @param directory HDFS directory to monitor for new file
   * @param recordLength length of each record in bytes
   *
   * @note We ensure that the byte array for each record in the
   * resulting RDDs of the DStream has the provided record length.
   */
  def binaryRecordsStream(
      directory: String,
      recordLength: Int): DStream[Array[Byte]] = withNamedScope("binary records stream") {
    val conf = _sc.hadoopConfiguration
    conf.setInt(FixedLengthBinaryInputFormat.RECORD_LENGTH_PROPERTY, recordLength)
    val br = fileStream[LongWritable, BytesWritable, FixedLengthBinaryInputFormat](
      directory, FileInputDStream.defaultFilter: Path => Boolean, newFilesOnly = true, conf)
    br.map { case (k, v) =>
      val bytes = v.copyBytes()
      require(bytes.length == recordLength, "Byte array does not have correct length. " +
        s"${bytes.length} did not equal recordLength: $recordLength")
      bytes
    }
  }

  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * @param queue      Queue of RDDs. Modifications to this data structure must be synchronized.
   * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
   * @tparam T         Type of objects in the RDD
   *
   * @note Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   */
  def queueStream[T: ClassTag](
      queue: Queue[RDD[T]],
      oneAtATime: Boolean = true
    ): InputDStream[T] = {
    queueStream(queue, oneAtATime, sc.makeRDD(Seq.empty[T], 1))
  }

  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * @param queue      Queue of RDDs. Modifications to this data structure must be synchronized.
   * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
   * @param defaultRDD Default RDD is returned by the DStream when the queue is empty.
   *                   Set as null if no RDD should be returned when empty
   * @tparam T         Type of objects in the RDD
   *
   * @note Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   */
  def queueStream[T: ClassTag](
      queue: Queue[RDD[T]],
      oneAtATime: Boolean,
      defaultRDD: RDD[T]
    ): InputDStream[T] = {
    new QueueInputDStream(this, queue, oneAtATime, defaultRDD)
  }

  /**
   * Create a unified DStream from multiple DStreams of the same type and same slide duration.
   */
  def union[T: ClassTag](streams: Seq[DStream[T]]): DStream[T] = withScope {
    new UnionDStream[T](streams.toArray)
  }

  /**
   * Create a new DStream in which each RDD is generated by applying a function on RDDs of
   * the DStreams.
   */
  def transform[T: ClassTag](
      dstreams: Seq[DStream[_]],
      transformFunc: (Seq[RDD[_]], Time) => RDD[T]
    ): DStream[T] = withScope {
    new TransformedDStream[T](dstreams, sparkContext.clean(transformFunc))
  }

  /**
   * Add a [[org.apache.spark.streaming.scheduler.StreamingListener]] object for
   * receiving system events related to streaming.
   */
  def addStreamingListener(streamingListener: StreamingListener): Unit = {
    scheduler.listenerBus.addListener(streamingListener)
  }

  def removeStreamingListener(streamingListener: StreamingListener): Unit = {
    scheduler.listenerBus.removeListener(streamingListener)
  }

  private def validate(): Unit = {
    assert(graph != null, "Graph is null")
    graph.validate()

    require(
      !isCheckpointingEnabled || checkpointDuration != null,
      "Checkpoint directory has been set, but the graph checkpointing interval has " +
        "not been set. Please use StreamingContext.checkpoint() to set the interval."
    )

    // Verify whether the DStream checkpoint is serializable
    if (isCheckpointingEnabled) {
      val checkpoint = new Checkpoint(this, Time(0))
      try {
        Checkpoint.serialize(checkpoint, conf)
      } catch {
        case e: NotSerializableException =>
          throw new NotSerializableException(
            "DStream checkpointing has been enabled but the DStreams with their functions " +
              "are not serializable\n" +
              SerializationDebugger.improveException(checkpoint, e).getMessage()
          )
      }
    }

    if (Utils.isDynamicAllocationEnabled(sc.conf) ||
        ExecutorAllocationManager.isDynamicAllocationEnabled(conf)) {
      logWarning("Dynamic Allocation is enabled for this application. " +
        "Enabling Dynamic allocation for Spark Streaming applications can cause data loss if " +
        "Write Ahead Log is not enabled for non-replayable sources. " +
        "See the programming guide for details on how to enable the Write Ahead Log.")
    }
  }

  /**
   * :: DeveloperApi ::
   *
   * Return the current state of the context. The context can be in three possible states -
   *
   *  - StreamingContextState.INITIALIZED - The context has been created, but not started yet.
   *    Input DStreams, transformations and output operations can be created on the context.
   *  - StreamingContextState.ACTIVE - The context has been started, and not stopped.
   *    Input DStreams, transformations and output operations cannot be created on the context.
   *  - StreamingContextState.STOPPED - The context has been stopped and cannot be used any more.
   */
  @DeveloperApi
  def getState(): StreamingContextState = synchronized {
    state
  }

  /**
   * Start the execution of the streams.
   *
   * @throws IllegalStateException if the StreamingContext is already stopped.
   */
  def start(): Unit = synchronized {
    state match {
      case INITIALIZED =>
        startSite.set(DStream.getCreationSite())
        StreamingContext.ACTIVATION_LOCK.synchronized {
          StreamingContext.assertNoOtherContextIsActive()
          try {
            validate()

            registerProgressListener()

            // Start the streaming scheduler in a new thread, so that thread local properties
            // like call sites and job groups can be reset without affecting those of the
            // current thread.
            ThreadUtils.runInNewThread("streaming-start") {
              sparkContext.setCallSite(startSite.get)
              sparkContext.clearJobGroup()
              sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
              savedProperties.set(Utils.cloneProperties(sparkContext.localProperties.get()))
              scheduler.start()
            }
            state = StreamingContextState.ACTIVE
            scheduler.listenerBus.post(
              StreamingListenerStreamingStarted(System.currentTimeMillis()))
          } catch {
            case NonFatal(e) =>
              logError("Error starting the context, marking it as stopped", e)
              scheduler.stop(false)
              state = StreamingContextState.STOPPED
              throw e
          }
          StreamingContext.setActiveContext(this)
        }
        logDebug("Adding shutdown hook") // force eager creation of logger
        shutdownHookRef = ShutdownHookManager.addShutdownHook(
          StreamingContext.SHUTDOWN_HOOK_PRIORITY)(() => stopOnShutdown())
        // Registering Streaming Metrics at the start of the StreamingContext
        assert(env.metricsSystem != null)
        env.metricsSystem.registerSource(streamingSource)
        uiTab.foreach(_.attach())
        logInfo("StreamingContext started")
      case ACTIVE =>
        logWarning("StreamingContext has already been started")
      case STOPPED =>
        throw new IllegalStateException("StreamingContext has already been stopped")
    }
  }


  /**
   * Wait for the execution to stop. Any exceptions that occurs during the execution
   * will be thrown in this thread.
   */
  def awaitTermination(): Unit = {
    waiter.waitForStopOrError()
  }

  /**
   * Wait for the execution to stop. Any exceptions that occurs during the execution
   * will be thrown in this thread.
   *
   * @param timeout time to wait in milliseconds
   * @return `true` if it's stopped; or throw the reported error during the execution; or `false`
   *         if the waiting time elapsed before returning from the method.
   */
  def awaitTerminationOrTimeout(timeout: Long): Boolean = {
    waiter.waitForStopOrError(timeout)
  }

  /**
   * Stop the execution of the streams immediately (does not wait for all received data
   * to be processed). By default, if `stopSparkContext` is not specified, the underlying
   * SparkContext will also be stopped. This implicit behavior can be configured using the
   * SparkConf configuration spark.streaming.stopSparkContextByDefault.
   *
   * @param stopSparkContext If true, stops the associated SparkContext. The underlying SparkContext
   *                         will be stopped regardless of whether this StreamingContext has been
   *                         started.
   */
  def stop(
      stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault", true)
     ): Unit = synchronized {
    stop(stopSparkContext, false)
  }

  /**
   * Stop the execution of the streams, with option of ensuring all received data
   * has been processed.
   *
   * @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext
   *                         will be stopped regardless of whether this StreamingContext has been
   *                         started.
   * @param stopGracefully if true, stops gracefully by waiting for the processing of all
   *                       received data to be completed
   */
  def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = {
    var shutdownHookRefToRemove: AnyRef = null
    if (LiveListenerBus.withinListenerThread.value) {
      throw new SparkException(s"Cannot stop StreamingContext within listener bus thread.")
    }
    synchronized {
      // The state should always be Stopped after calling `stop()`, even if we haven't started yet
      state match {
        case INITIALIZED =>
          logWarning("StreamingContext has not been started yet")
          state = STOPPED
        case STOPPED =>
          logWarning("StreamingContext has already been stopped")
          state = STOPPED
        case ACTIVE =>
          // It's important that we don't set state = STOPPED until the very end of this case,
          // since we need to ensure that we're still able to call `stop()` to recover from
          // a partially-stopped StreamingContext which resulted from this `stop()` call being
          // interrupted. See SPARK-12001 for more details. Because the body of this case can be
          // executed twice in the case of a partial stop, all methods called here need to be
          // idempotent.
          Utils.tryLogNonFatalError {
            scheduler.stop(stopGracefully)
          }
          // Removing the streamingSource to de-register the metrics on stop()
          Utils.tryLogNonFatalError {
            env.metricsSystem.removeSource(streamingSource)
          }
          Utils.tryLogNonFatalError {
            uiTab.foreach(_.detach())
          }
          Utils.tryLogNonFatalError {
            unregisterProgressListener()
          }
          StreamingContext.setActiveContext(null)
          Utils.tryLogNonFatalError {
            waiter.notifyStop()
          }
          if (shutdownHookRef != null) {
            shutdownHookRefToRemove = shutdownHookRef
            shutdownHookRef = null
          }
          logInfo("StreamingContext stopped successfully")
          state = STOPPED
      }
    }
    if (shutdownHookRefToRemove != null) {
      ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove)
    }
    // Even if we have already stopped, we still need to attempt to stop the SparkContext because
    // a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true).
    if (stopSparkContext) sc.stop()
  }

  private def stopOnShutdown(): Unit = {
    val stopGracefully = conf.get(STOP_GRACEFULLY_ON_SHUTDOWN)
    logInfo(s"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook")
    // Do not stop SparkContext, let its own shutdown hook stop it
    stop(stopSparkContext = false, stopGracefully = stopGracefully)
  }

  private def registerProgressListener(): Unit = {
    addStreamingListener(progressListener)
    sc.addSparkListener(progressListener)
    sc.ui.foreach(_.setStreamingJobProgressListener(progressListener))
  }

  private def unregisterProgressListener(): Unit = {
    removeStreamingListener(progressListener)
    sc.removeSparkListener(progressListener)
    sc.ui.foreach(_.clearStreamingJobProgressListener())
  }
}

/**
 * StreamingContext object contains a number of utility functions related to the
 * StreamingContext class.
 */

object StreamingContext extends Logging {

  /**
   * Lock that guards activation of a StreamingContext as well as access to the singleton active
   * StreamingContext in getActiveOrCreate().
   */
  private val ACTIVATION_LOCK = new Object()

  private val SHUTDOWN_HOOK_PRIORITY = ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY + 1

  private val activeContext = new AtomicReference[StreamingContext](null)

  private def assertNoOtherContextIsActive(): Unit = {
    ACTIVATION_LOCK.synchronized {
      if (activeContext.get() != null) {
        throw new IllegalStateException(
          "Only one StreamingContext may be started in this JVM. " +
            "Currently running StreamingContext was started at" +
            activeContext.get.getStartSite().longForm)
      }
    }
  }

  private def setActiveContext(ssc: StreamingContext): Unit = {
    ACTIVATION_LOCK.synchronized {
      activeContext.set(ssc)
    }
  }

  /**
   * Get the currently active context, if there is one. Active means started but not stopped.
   */
  def getActive(): Option[StreamingContext] = {
    ACTIVATION_LOCK.synchronized {
      Option(activeContext.get())
    }
  }

  /**
   * Either return the "active" StreamingContext (that is, started but not stopped), or create a
   * new StreamingContext that is
   * @param creatingFunc   Function to create a new StreamingContext
   */
  def getActiveOrCreate(creatingFunc: () => StreamingContext): StreamingContext = {
    ACTIVATION_LOCK.synchronized {
      getActive().getOrElse { creatingFunc() }
    }
  }

  /**
   * Either get the currently active StreamingContext (that is, started but not stopped),
   * OR recreate a StreamingContext from checkpoint data in the given path. If checkpoint data
   * does not exist in the provided, then create a new StreamingContext by calling the provided
   * `creatingFunc`.
   *
   * @param checkpointPath Checkpoint directory used in an earlier StreamingContext program
   * @param creatingFunc   Function to create a new StreamingContext
   * @param hadoopConf     Optional Hadoop configuration if necessary for reading from the
   *                       file system
   * @param createOnError  Optional, whether to create a new StreamingContext if there is an
   *                       error in reading checkpoint data. By default, an exception will be
   *                       thrown on error.
   */
  def getActiveOrCreate(
      checkpointPath: String,
      creatingFunc: () => StreamingContext,
      hadoopConf: Configuration = SparkHadoopUtil.get.conf,
      createOnError: Boolean = false
    ): StreamingContext = {
    ACTIVATION_LOCK.synchronized {
      getActive().getOrElse { getOrCreate(checkpointPath, creatingFunc, hadoopConf, createOnError) }
    }
  }

  /**
   * Either recreate a StreamingContext from checkpoint data or create a new StreamingContext.
   * If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be
   * recreated from the checkpoint data. If the data does not exist, then the StreamingContext
   * will be created by called the provided `creatingFunc`.
   *
   * @param checkpointPath Checkpoint directory used in an earlier StreamingContext program
   * @param creatingFunc   Function to create a new StreamingContext
   * @param hadoopConf     Optional Hadoop configuration if necessary for reading from the
   *                       file system
   * @param createOnError  Optional, whether to create a new StreamingContext if there is an
   *                       error in reading checkpoint data. By default, an exception will be
   *                       thrown on error.
   */
  def getOrCreate(
      checkpointPath: String,
      creatingFunc: () => StreamingContext,
      hadoopConf: Configuration = SparkHadoopUtil.get.conf,
      createOnError: Boolean = false
    ): StreamingContext = {
    val checkpointOption = CheckpointReader.read(
      checkpointPath, new SparkConf(), hadoopConf, createOnError)
    checkpointOption.map(new StreamingContext(null, _, null)).getOrElse(creatingFunc())
  }

  /**
   * Find the JAR from which a given class was loaded, to make it easy for users to pass
   * their JARs to StreamingContext.
   */
  def jarOfClass(cls: Class[_]): Option[String] = SparkContext.jarOfClass(cls)

  private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = {
    new SparkContext(conf)
  }

  private[streaming] def createNewSparkContext(
      master: String,
      appName: String,
      sparkHome: String,
      jars: Seq[String],
      environment: Map[String, String]
    ): SparkContext = {
    val conf = SparkContext.updatedConf(
      new SparkConf(), master, appName, sparkHome, jars, environment)
    new SparkContext(conf)
  }

  private[streaming] def rddToFileName[T](prefix: String, suffix: String, time: Time): String = {
    var result = time.milliseconds.toString
    if (prefix != null && prefix.length > 0) {
      result = s"$prefix-$result"
    }
    if (suffix != null && suffix.length > 0) {
      result = s"$result.$suffix"
    }
    result
  }
}

private class StreamingContextPythonHelper {

  /**
   * This is a private method only for Python to implement `getOrCreate`.
   */
  def tryRecoverFromCheckpoint(checkpointPath: String): Option[StreamingContext] = {
    val checkpointOption = CheckpointReader.read(
      checkpointPath, new SparkConf(), SparkHadoopUtil.get.conf, ignoreReadError = false)
    checkpointOption.map(new StreamingContext(null, _, null))
  }
}

相关信息

spark 源码目录

相关文章

spark Checkpoint 源码

spark ContextWaiter 源码

spark DStreamGraph 源码

spark Duration 源码

spark Interval 源码

spark State 源码

spark StateSpec 源码

spark StreamingConf 源码

spark StreamingSource 源码

spark Time 源码

0  赞