spark StreamingContext 源码
spark StreamingContext 代码
文件路径:/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.streaming
import java.io.{InputStream, NotSerializableException}
import java.util.Properties
import java.util.concurrent.atomic.{AtomicInteger, AtomicReference}
import scala.collection.Map
import scala.collection.mutable.Queue
import scala.reflect.ClassTag
import scala.util.control.NonFatal
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{BytesWritable, LongWritable, Text}
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat}
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark._
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.input.FixedLengthBinaryInputFormat
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.{RDD, RDDOperationScope}
import org.apache.spark.scheduler.LiveListenerBus
import org.apache.spark.serializer.SerializationDebugger
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.StreamingConf.STOP_GRACEFULLY_ON_SHUTDOWN
import org.apache.spark.streaming.StreamingContextState._
import org.apache.spark.streaming.dstream._
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.scheduler.
{ExecutorAllocationManager, JobScheduler, StreamingListener, StreamingListenerStreamingStarted}
import org.apache.spark.streaming.ui.{StreamingJobProgressListener, StreamingTab}
import org.apache.spark.util.{CallSite, ShutdownHookManager, ThreadUtils, Utils}
/**
* Main entry point for Spark Streaming functionality. It provides methods used to create
* [[org.apache.spark.streaming.dstream.DStream]]s from various input sources. It can be either
* created by providing a Spark master URL and an appName, or from a org.apache.spark.SparkConf
* configuration (see core Spark documentation), or from an existing org.apache.spark.SparkContext.
* The associated SparkContext can be accessed using `context.sparkContext`. After
* creating and transforming DStreams, the streaming computation can be started and stopped
* using `context.start()` and `context.stop()`, respectively.
* `context.awaitTermination()` allows the current thread to wait for the termination
* of the context by `stop()` or by an exception.
*/
class StreamingContext private[streaming] (
_sc: SparkContext,
_cp: Checkpoint,
_batchDur: Duration
) extends Logging {
/**
* Create a StreamingContext using an existing SparkContext.
* @param sparkContext existing SparkContext
* @param batchDuration the time interval at which streaming data will be divided into batches
*/
def this(sparkContext: SparkContext, batchDuration: Duration) = {
this(sparkContext, null, batchDuration)
}
/**
* Create a StreamingContext by providing the configuration necessary for a new SparkContext.
* @param conf a org.apache.spark.SparkConf object specifying Spark parameters
* @param batchDuration the time interval at which streaming data will be divided into batches
*/
def this(conf: SparkConf, batchDuration: Duration) = {
this(StreamingContext.createNewSparkContext(conf), null, batchDuration)
}
/**
* Create a StreamingContext by providing the details necessary for creating a new SparkContext.
* @param master cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
* @param appName a name for your job, to display on the cluster web UI
* @param batchDuration the time interval at which streaming data will be divided into batches
*/
def this(
master: String,
appName: String,
batchDuration: Duration,
sparkHome: String = null,
jars: Seq[String] = Nil,
environment: Map[String, String] = Map()) = {
this(StreamingContext.createNewSparkContext(master, appName, sparkHome, jars, environment),
null, batchDuration)
}
/**
* Recreate a StreamingContext from a checkpoint file.
* @param path Path to the directory that was specified as the checkpoint directory
* @param hadoopConf Optional, configuration object if necessary for reading from
* HDFS compatible filesystems
*/
def this(path: String, hadoopConf: Configuration) =
this(null, CheckpointReader.read(path, new SparkConf(), hadoopConf).orNull, null)
/**
* Recreate a StreamingContext from a checkpoint file.
* @param path Path to the directory that was specified as the checkpoint directory
*/
def this(path: String) = this(path, SparkHadoopUtil.get.conf)
/**
* Recreate a StreamingContext from a checkpoint file using an existing SparkContext.
* @param path Path to the directory that was specified as the checkpoint directory
* @param sparkContext Existing SparkContext
*/
def this(path: String, sparkContext: SparkContext) = {
this(
sparkContext,
CheckpointReader.read(path, sparkContext.conf, sparkContext.hadoopConfiguration).orNull,
null)
}
require(_sc != null || _cp != null,
"Spark Streaming cannot be initialized with both SparkContext and checkpoint as null")
private[streaming] val isCheckpointPresent: Boolean = _cp != null
private[streaming] val sc: SparkContext = {
if (_sc != null) {
_sc
} else if (isCheckpointPresent) {
SparkContext.getOrCreate(_cp.createSparkConf())
} else {
throw new SparkException("Cannot create StreamingContext without a SparkContext")
}
}
if (sc.conf.get("spark.master") == "local" || sc.conf.get("spark.master") == "local[1]") {
logWarning("spark.master should be set as local[n], n > 1 in local mode if you have receivers" +
" to get data, otherwise Spark jobs will not get resources to process the received data.")
}
private[streaming] val conf = sc.conf
private[streaming] val env = sc.env
private[streaming] val graph: DStreamGraph = {
if (isCheckpointPresent) {
_cp.graph.setContext(this)
_cp.graph.restoreCheckpointData()
_cp.graph
} else {
require(_batchDur != null, "Batch duration for StreamingContext cannot be null")
val newGraph = new DStreamGraph()
newGraph.setBatchDuration(_batchDur)
newGraph
}
}
private val nextInputStreamId = new AtomicInteger(0)
private[streaming] var checkpointDir: String = {
if (isCheckpointPresent) {
sc.setCheckpointDir(_cp.checkpointDir)
_cp.checkpointDir
} else {
null
}
}
private[streaming] val checkpointDuration: Duration = {
if (isCheckpointPresent) _cp.checkpointDuration else graph.batchDuration
}
private[streaming] val scheduler = new JobScheduler(this)
private[streaming] val waiter = new ContextWaiter
private[streaming] val progressListener = new StreamingJobProgressListener(this)
private[streaming] val uiTab: Option[StreamingTab] =
sparkContext.ui match {
case Some(ui) => Some(new StreamingTab(this, ui))
case None => None
}
/* Initializing a streamingSource to register metrics */
private val streamingSource = new StreamingSource(this)
private var state: StreamingContextState = INITIALIZED
private val startSite = new AtomicReference[CallSite](null)
// Copy of thread-local properties from SparkContext. These properties will be set in all tasks
// submitted by this StreamingContext after start.
private[streaming] val savedProperties = new AtomicReference[Properties](new Properties)
private[streaming] def getStartSite(): CallSite = startSite.get()
private var shutdownHookRef: AnyRef = _
conf.getOption("spark.streaming.checkpoint.directory").foreach(checkpoint)
/**
* Return the associated Spark context
*/
def sparkContext: SparkContext = sc
/**
* Set each DStream in this context to remember RDDs it generated in the last given duration.
* DStreams remember RDDs only for a limited duration of time and release them for garbage
* collection. This method allows the developer to specify how long to remember the RDDs (
* if the developer wishes to query old data outside the DStream computation).
* @param duration Minimum duration that each DStream should remember its RDDs
*/
def remember(duration: Duration): Unit = {
graph.remember(duration)
}
/**
* Set the context to periodically checkpoint the DStream operations for driver
* fault-tolerance.
* @param directory HDFS-compatible directory where the checkpoint data will be reliably stored.
* Note that this must be a fault-tolerant file system like HDFS.
*/
def checkpoint(directory: String): Unit = {
if (directory != null) {
val path = new Path(directory)
val fs = path.getFileSystem(sparkContext.hadoopConfiguration)
fs.mkdirs(path)
val fullPath = fs.getFileStatus(path).getPath().toString
sc.setCheckpointDir(fullPath)
checkpointDir = fullPath
} else {
checkpointDir = null
}
}
private[streaming] def isCheckpointingEnabled: Boolean = {
checkpointDir != null
}
private[streaming] def initialCheckpoint: Checkpoint = {
if (isCheckpointPresent) _cp else null
}
private[streaming] def getNewInputStreamId() = nextInputStreamId.getAndIncrement()
/**
* Execute a block of code in a scope such that all new DStreams created in this body will
* be part of the same scope. For more detail, see the comments in `doCompute`.
*
* Note: Return statements are NOT allowed in the given body.
*/
private[streaming] def withScope[U](body: => U): U = sparkContext.withScope(body)
/**
* Execute a block of code in a scope such that all new DStreams created in this body will
* be part of the same scope. For more detail, see the comments in `doCompute`.
*
* Note: Return statements are NOT allowed in the given body.
*/
private[streaming] def withNamedScope[U](name: String)(body: => U): U = {
RDDOperationScope.withScope(sc, name, allowNesting = false, ignoreParent = false)(body)
}
/**
* Create an input stream with any arbitrary user implemented receiver.
* Find more details at https://spark.apache.org/docs/latest/streaming-custom-receivers.html
* @param receiver Custom implementation of Receiver
*/
def receiverStream[T: ClassTag](receiver: Receiver[T]): ReceiverInputDStream[T] = {
withNamedScope("receiver stream") {
new PluggableInputDStream[T](this, receiver)
}
}
/**
* Creates an input stream from TCP source hostname:port. Data is received using
* a TCP socket and the receive bytes is interpreted as UTF8 encoded `\n` delimited
* lines.
* @param hostname Hostname to connect to for receiving data
* @param port Port to connect to for receiving data
* @param storageLevel Storage level to use for storing the received objects
* (default: StorageLevel.MEMORY_AND_DISK_SER_2)
* @see [[socketStream]]
*/
def socketTextStream(
hostname: String,
port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
}
/**
* Creates an input stream from TCP source hostname:port. Data is received using
* a TCP socket and the receive bytes it interpreted as object using the given
* converter.
* @param hostname Hostname to connect to for receiving data
* @param port Port to connect to for receiving data
* @param converter Function to convert the byte stream to objects
* @param storageLevel Storage level to use for storing the received objects
* @tparam T Type of the objects received (after converting bytes to objects)
*/
def socketStream[T: ClassTag](
hostname: String,
port: Int,
converter: (InputStream) => Iterator[T],
storageLevel: StorageLevel
): ReceiverInputDStream[T] = {
new SocketInputDStream[T](this, hostname, port, converter, storageLevel)
}
/**
* Create an input stream from network source hostname:port, where data is received
* as serialized blocks (serialized using the Spark's serializer) that can be directly
* pushed into the block manager without deserializing them. This is the most efficient
* way to receive data.
* @param hostname Hostname to connect to for receiving data
* @param port Port to connect to for receiving data
* @param storageLevel Storage level to use for storing the received objects
* (default: StorageLevel.MEMORY_AND_DISK_SER_2)
* @tparam T Type of the objects in the received blocks
*/
def rawSocketStream[T: ClassTag](
hostname: String,
port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[T] = withNamedScope("raw socket stream") {
new RawInputDStream[T](this, hostname, port, storageLevel)
}
/**
* Create an input stream that monitors a Hadoop-compatible filesystem
* for new files and reads them using the given key-value types and input format.
* Files must be written to the monitored directory by "moving" them from another
* location within the same file system. File names starting with . are ignored.
* @param directory HDFS directory to monitor for new file
* @tparam K Key type for reading HDFS file
* @tparam V Value type for reading HDFS file
* @tparam F Input format for reading HDFS file
*/
def fileStream[
K: ClassTag,
V: ClassTag,
F <: NewInputFormat[K, V]: ClassTag
] (directory: String): InputDStream[(K, V)] = {
new FileInputDStream[K, V, F](this, directory)
}
/**
* Create an input stream that monitors a Hadoop-compatible filesystem
* for new files and reads them using the given key-value types and input format.
* Files must be written to the monitored directory by "moving" them from another
* location within the same file system.
* @param directory HDFS directory to monitor for new file
* @param filter Function to filter paths to process
* @param newFilesOnly Should process only new files and ignore existing files in the directory
* @tparam K Key type for reading HDFS file
* @tparam V Value type for reading HDFS file
* @tparam F Input format for reading HDFS file
*/
def fileStream[
K: ClassTag,
V: ClassTag,
F <: NewInputFormat[K, V]: ClassTag
] (directory: String, filter: Path => Boolean, newFilesOnly: Boolean): InputDStream[(K, V)] = {
new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly)
}
/**
* Create an input stream that monitors a Hadoop-compatible filesystem
* for new files and reads them using the given key-value types and input format.
* Files must be written to the monitored directory by "moving" them from another
* location within the same file system. File names starting with . are ignored.
* @param directory HDFS directory to monitor for new file
* @param filter Function to filter paths to process
* @param newFilesOnly Should process only new files and ignore existing files in the directory
* @param conf Hadoop configuration
* @tparam K Key type for reading HDFS file
* @tparam V Value type for reading HDFS file
* @tparam F Input format for reading HDFS file
*/
def fileStream[
K: ClassTag,
V: ClassTag,
F <: NewInputFormat[K, V]: ClassTag
] (directory: String,
filter: Path => Boolean,
newFilesOnly: Boolean,
conf: Configuration): InputDStream[(K, V)] = {
new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly, Option(conf))
}
/**
* Create an input stream that monitors a Hadoop-compatible filesystem
* for new files and reads them as text files (using key as LongWritable, value
* as Text and input format as TextInputFormat). Files must be written to the
* monitored directory by "moving" them from another location within the same
* file system. File names starting with . are ignored.
* The text files must be encoded as UTF-8.
*
* @param directory HDFS directory to monitor for new file
*/
def textFileStream(directory: String): DStream[String] = withNamedScope("text file stream") {
fileStream[LongWritable, Text, TextInputFormat](directory).map(_._2.toString)
}
/**
* Create an input stream that monitors a Hadoop-compatible filesystem
* for new files and reads them as flat binary files, assuming a fixed length per record,
* generating one byte array per record. Files must be written to the monitored directory
* by "moving" them from another location within the same file system. File names
* starting with . are ignored.
*
* @param directory HDFS directory to monitor for new file
* @param recordLength length of each record in bytes
*
* @note We ensure that the byte array for each record in the
* resulting RDDs of the DStream has the provided record length.
*/
def binaryRecordsStream(
directory: String,
recordLength: Int): DStream[Array[Byte]] = withNamedScope("binary records stream") {
val conf = _sc.hadoopConfiguration
conf.setInt(FixedLengthBinaryInputFormat.RECORD_LENGTH_PROPERTY, recordLength)
val br = fileStream[LongWritable, BytesWritable, FixedLengthBinaryInputFormat](
directory, FileInputDStream.defaultFilter: Path => Boolean, newFilesOnly = true, conf)
br.map { case (k, v) =>
val bytes = v.copyBytes()
require(bytes.length == recordLength, "Byte array does not have correct length. " +
s"${bytes.length} did not equal recordLength: $recordLength")
bytes
}
}
/**
* Create an input stream from a queue of RDDs. In each batch,
* it will process either one or all of the RDDs returned by the queue.
*
* @param queue Queue of RDDs. Modifications to this data structure must be synchronized.
* @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
* @tparam T Type of objects in the RDD
*
* @note Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
* those RDDs, so `queueStream` doesn't support checkpointing.
*/
def queueStream[T: ClassTag](
queue: Queue[RDD[T]],
oneAtATime: Boolean = true
): InputDStream[T] = {
queueStream(queue, oneAtATime, sc.makeRDD(Seq.empty[T], 1))
}
/**
* Create an input stream from a queue of RDDs. In each batch,
* it will process either one or all of the RDDs returned by the queue.
*
* @param queue Queue of RDDs. Modifications to this data structure must be synchronized.
* @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
* @param defaultRDD Default RDD is returned by the DStream when the queue is empty.
* Set as null if no RDD should be returned when empty
* @tparam T Type of objects in the RDD
*
* @note Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
* those RDDs, so `queueStream` doesn't support checkpointing.
*/
def queueStream[T: ClassTag](
queue: Queue[RDD[T]],
oneAtATime: Boolean,
defaultRDD: RDD[T]
): InputDStream[T] = {
new QueueInputDStream(this, queue, oneAtATime, defaultRDD)
}
/**
* Create a unified DStream from multiple DStreams of the same type and same slide duration.
*/
def union[T: ClassTag](streams: Seq[DStream[T]]): DStream[T] = withScope {
new UnionDStream[T](streams.toArray)
}
/**
* Create a new DStream in which each RDD is generated by applying a function on RDDs of
* the DStreams.
*/
def transform[T: ClassTag](
dstreams: Seq[DStream[_]],
transformFunc: (Seq[RDD[_]], Time) => RDD[T]
): DStream[T] = withScope {
new TransformedDStream[T](dstreams, sparkContext.clean(transformFunc))
}
/**
* Add a [[org.apache.spark.streaming.scheduler.StreamingListener]] object for
* receiving system events related to streaming.
*/
def addStreamingListener(streamingListener: StreamingListener): Unit = {
scheduler.listenerBus.addListener(streamingListener)
}
def removeStreamingListener(streamingListener: StreamingListener): Unit = {
scheduler.listenerBus.removeListener(streamingListener)
}
private def validate(): Unit = {
assert(graph != null, "Graph is null")
graph.validate()
require(
!isCheckpointingEnabled || checkpointDuration != null,
"Checkpoint directory has been set, but the graph checkpointing interval has " +
"not been set. Please use StreamingContext.checkpoint() to set the interval."
)
// Verify whether the DStream checkpoint is serializable
if (isCheckpointingEnabled) {
val checkpoint = new Checkpoint(this, Time(0))
try {
Checkpoint.serialize(checkpoint, conf)
} catch {
case e: NotSerializableException =>
throw new NotSerializableException(
"DStream checkpointing has been enabled but the DStreams with their functions " +
"are not serializable\n" +
SerializationDebugger.improveException(checkpoint, e).getMessage()
)
}
}
if (Utils.isDynamicAllocationEnabled(sc.conf) ||
ExecutorAllocationManager.isDynamicAllocationEnabled(conf)) {
logWarning("Dynamic Allocation is enabled for this application. " +
"Enabling Dynamic allocation for Spark Streaming applications can cause data loss if " +
"Write Ahead Log is not enabled for non-replayable sources. " +
"See the programming guide for details on how to enable the Write Ahead Log.")
}
}
/**
* :: DeveloperApi ::
*
* Return the current state of the context. The context can be in three possible states -
*
* - StreamingContextState.INITIALIZED - The context has been created, but not started yet.
* Input DStreams, transformations and output operations can be created on the context.
* - StreamingContextState.ACTIVE - The context has been started, and not stopped.
* Input DStreams, transformations and output operations cannot be created on the context.
* - StreamingContextState.STOPPED - The context has been stopped and cannot be used any more.
*/
@DeveloperApi
def getState(): StreamingContextState = synchronized {
state
}
/**
* Start the execution of the streams.
*
* @throws IllegalStateException if the StreamingContext is already stopped.
*/
def start(): Unit = synchronized {
state match {
case INITIALIZED =>
startSite.set(DStream.getCreationSite())
StreamingContext.ACTIVATION_LOCK.synchronized {
StreamingContext.assertNoOtherContextIsActive()
try {
validate()
registerProgressListener()
// Start the streaming scheduler in a new thread, so that thread local properties
// like call sites and job groups can be reset without affecting those of the
// current thread.
ThreadUtils.runInNewThread("streaming-start") {
sparkContext.setCallSite(startSite.get)
sparkContext.clearJobGroup()
sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
savedProperties.set(Utils.cloneProperties(sparkContext.localProperties.get()))
scheduler.start()
}
state = StreamingContextState.ACTIVE
scheduler.listenerBus.post(
StreamingListenerStreamingStarted(System.currentTimeMillis()))
} catch {
case NonFatal(e) =>
logError("Error starting the context, marking it as stopped", e)
scheduler.stop(false)
state = StreamingContextState.STOPPED
throw e
}
StreamingContext.setActiveContext(this)
}
logDebug("Adding shutdown hook") // force eager creation of logger
shutdownHookRef = ShutdownHookManager.addShutdownHook(
StreamingContext.SHUTDOWN_HOOK_PRIORITY)(() => stopOnShutdown())
// Registering Streaming Metrics at the start of the StreamingContext
assert(env.metricsSystem != null)
env.metricsSystem.registerSource(streamingSource)
uiTab.foreach(_.attach())
logInfo("StreamingContext started")
case ACTIVE =>
logWarning("StreamingContext has already been started")
case STOPPED =>
throw new IllegalStateException("StreamingContext has already been stopped")
}
}
/**
* Wait for the execution to stop. Any exceptions that occurs during the execution
* will be thrown in this thread.
*/
def awaitTermination(): Unit = {
waiter.waitForStopOrError()
}
/**
* Wait for the execution to stop. Any exceptions that occurs during the execution
* will be thrown in this thread.
*
* @param timeout time to wait in milliseconds
* @return `true` if it's stopped; or throw the reported error during the execution; or `false`
* if the waiting time elapsed before returning from the method.
*/
def awaitTerminationOrTimeout(timeout: Long): Boolean = {
waiter.waitForStopOrError(timeout)
}
/**
* Stop the execution of the streams immediately (does not wait for all received data
* to be processed). By default, if `stopSparkContext` is not specified, the underlying
* SparkContext will also be stopped. This implicit behavior can be configured using the
* SparkConf configuration spark.streaming.stopSparkContextByDefault.
*
* @param stopSparkContext If true, stops the associated SparkContext. The underlying SparkContext
* will be stopped regardless of whether this StreamingContext has been
* started.
*/
def stop(
stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault", true)
): Unit = synchronized {
stop(stopSparkContext, false)
}
/**
* Stop the execution of the streams, with option of ensuring all received data
* has been processed.
*
* @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext
* will be stopped regardless of whether this StreamingContext has been
* started.
* @param stopGracefully if true, stops gracefully by waiting for the processing of all
* received data to be completed
*/
def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = {
var shutdownHookRefToRemove: AnyRef = null
if (LiveListenerBus.withinListenerThread.value) {
throw new SparkException(s"Cannot stop StreamingContext within listener bus thread.")
}
synchronized {
// The state should always be Stopped after calling `stop()`, even if we haven't started yet
state match {
case INITIALIZED =>
logWarning("StreamingContext has not been started yet")
state = STOPPED
case STOPPED =>
logWarning("StreamingContext has already been stopped")
state = STOPPED
case ACTIVE =>
// It's important that we don't set state = STOPPED until the very end of this case,
// since we need to ensure that we're still able to call `stop()` to recover from
// a partially-stopped StreamingContext which resulted from this `stop()` call being
// interrupted. See SPARK-12001 for more details. Because the body of this case can be
// executed twice in the case of a partial stop, all methods called here need to be
// idempotent.
Utils.tryLogNonFatalError {
scheduler.stop(stopGracefully)
}
// Removing the streamingSource to de-register the metrics on stop()
Utils.tryLogNonFatalError {
env.metricsSystem.removeSource(streamingSource)
}
Utils.tryLogNonFatalError {
uiTab.foreach(_.detach())
}
Utils.tryLogNonFatalError {
unregisterProgressListener()
}
StreamingContext.setActiveContext(null)
Utils.tryLogNonFatalError {
waiter.notifyStop()
}
if (shutdownHookRef != null) {
shutdownHookRefToRemove = shutdownHookRef
shutdownHookRef = null
}
logInfo("StreamingContext stopped successfully")
state = STOPPED
}
}
if (shutdownHookRefToRemove != null) {
ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove)
}
// Even if we have already stopped, we still need to attempt to stop the SparkContext because
// a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true).
if (stopSparkContext) sc.stop()
}
private def stopOnShutdown(): Unit = {
val stopGracefully = conf.get(STOP_GRACEFULLY_ON_SHUTDOWN)
logInfo(s"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook")
// Do not stop SparkContext, let its own shutdown hook stop it
stop(stopSparkContext = false, stopGracefully = stopGracefully)
}
private def registerProgressListener(): Unit = {
addStreamingListener(progressListener)
sc.addSparkListener(progressListener)
sc.ui.foreach(_.setStreamingJobProgressListener(progressListener))
}
private def unregisterProgressListener(): Unit = {
removeStreamingListener(progressListener)
sc.removeSparkListener(progressListener)
sc.ui.foreach(_.clearStreamingJobProgressListener())
}
}
/**
* StreamingContext object contains a number of utility functions related to the
* StreamingContext class.
*/
object StreamingContext extends Logging {
/**
* Lock that guards activation of a StreamingContext as well as access to the singleton active
* StreamingContext in getActiveOrCreate().
*/
private val ACTIVATION_LOCK = new Object()
private val SHUTDOWN_HOOK_PRIORITY = ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY + 1
private val activeContext = new AtomicReference[StreamingContext](null)
private def assertNoOtherContextIsActive(): Unit = {
ACTIVATION_LOCK.synchronized {
if (activeContext.get() != null) {
throw new IllegalStateException(
"Only one StreamingContext may be started in this JVM. " +
"Currently running StreamingContext was started at" +
activeContext.get.getStartSite().longForm)
}
}
}
private def setActiveContext(ssc: StreamingContext): Unit = {
ACTIVATION_LOCK.synchronized {
activeContext.set(ssc)
}
}
/**
* Get the currently active context, if there is one. Active means started but not stopped.
*/
def getActive(): Option[StreamingContext] = {
ACTIVATION_LOCK.synchronized {
Option(activeContext.get())
}
}
/**
* Either return the "active" StreamingContext (that is, started but not stopped), or create a
* new StreamingContext that is
* @param creatingFunc Function to create a new StreamingContext
*/
def getActiveOrCreate(creatingFunc: () => StreamingContext): StreamingContext = {
ACTIVATION_LOCK.synchronized {
getActive().getOrElse { creatingFunc() }
}
}
/**
* Either get the currently active StreamingContext (that is, started but not stopped),
* OR recreate a StreamingContext from checkpoint data in the given path. If checkpoint data
* does not exist in the provided, then create a new StreamingContext by calling the provided
* `creatingFunc`.
*
* @param checkpointPath Checkpoint directory used in an earlier StreamingContext program
* @param creatingFunc Function to create a new StreamingContext
* @param hadoopConf Optional Hadoop configuration if necessary for reading from the
* file system
* @param createOnError Optional, whether to create a new StreamingContext if there is an
* error in reading checkpoint data. By default, an exception will be
* thrown on error.
*/
def getActiveOrCreate(
checkpointPath: String,
creatingFunc: () => StreamingContext,
hadoopConf: Configuration = SparkHadoopUtil.get.conf,
createOnError: Boolean = false
): StreamingContext = {
ACTIVATION_LOCK.synchronized {
getActive().getOrElse { getOrCreate(checkpointPath, creatingFunc, hadoopConf, createOnError) }
}
}
/**
* Either recreate a StreamingContext from checkpoint data or create a new StreamingContext.
* If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be
* recreated from the checkpoint data. If the data does not exist, then the StreamingContext
* will be created by called the provided `creatingFunc`.
*
* @param checkpointPath Checkpoint directory used in an earlier StreamingContext program
* @param creatingFunc Function to create a new StreamingContext
* @param hadoopConf Optional Hadoop configuration if necessary for reading from the
* file system
* @param createOnError Optional, whether to create a new StreamingContext if there is an
* error in reading checkpoint data. By default, an exception will be
* thrown on error.
*/
def getOrCreate(
checkpointPath: String,
creatingFunc: () => StreamingContext,
hadoopConf: Configuration = SparkHadoopUtil.get.conf,
createOnError: Boolean = false
): StreamingContext = {
val checkpointOption = CheckpointReader.read(
checkpointPath, new SparkConf(), hadoopConf, createOnError)
checkpointOption.map(new StreamingContext(null, _, null)).getOrElse(creatingFunc())
}
/**
* Find the JAR from which a given class was loaded, to make it easy for users to pass
* their JARs to StreamingContext.
*/
def jarOfClass(cls: Class[_]): Option[String] = SparkContext.jarOfClass(cls)
private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = {
new SparkContext(conf)
}
private[streaming] def createNewSparkContext(
master: String,
appName: String,
sparkHome: String,
jars: Seq[String],
environment: Map[String, String]
): SparkContext = {
val conf = SparkContext.updatedConf(
new SparkConf(), master, appName, sparkHome, jars, environment)
new SparkContext(conf)
}
private[streaming] def rddToFileName[T](prefix: String, suffix: String, time: Time): String = {
var result = time.milliseconds.toString
if (prefix != null && prefix.length > 0) {
result = s"$prefix-$result"
}
if (suffix != null && suffix.length > 0) {
result = s"$result.$suffix"
}
result
}
}
private class StreamingContextPythonHelper {
/**
* This is a private method only for Python to implement `getOrCreate`.
*/
def tryRecoverFromCheckpoint(checkpointPath: String): Option[StreamingContext] = {
val checkpointOption = CheckpointReader.read(
checkpointPath, new SparkConf(), SparkHadoopUtil.get.conf, ignoreReadError = false)
checkpointOption.map(new StreamingContext(null, _, null))
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦