spark StateSpec 源码

  • 2022-10-20
  • 浏览 (290)

spark StateSpec 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/StateSpec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming

import org.apache.spark.{HashPartitioner, Partitioner}
import org.apache.spark.annotation.Experimental
import org.apache.spark.api.java.{JavaPairRDD, JavaUtils, Optional}
import org.apache.spark.api.java.function.{Function3 => JFunction3, Function4 => JFunction4}
import org.apache.spark.rdd.RDD
import org.apache.spark.util.ClosureCleaner

/**
 * :: Experimental ::
 * Abstract class representing all the specifications of the DStream transformation
 * `mapWithState` operation of a
 * [[org.apache.spark.streaming.dstream.PairDStreamFunctions pair DStream]] (Scala) or a
 * [[org.apache.spark.streaming.api.java.JavaPairDStream JavaPairDStream]] (Java).
 * Use `org.apache.spark.streaming.StateSpec.function()` factory methods
 * to create instances of this class.
 *
 * Example in Scala:
 * {{{
 *    // A mapping function that maintains an integer state and return a String
 *    def mappingFunction(key: String, value: Option[Int], state: State[Int]): Option[String] = {
 *      // Use state.exists(), state.get(), state.update() and state.remove()
 *      // to manage state, and return the necessary string
 *    }
 *
 *    val spec = StateSpec.function(mappingFunction).numPartitions(10)
 *
 *    val mapWithStateDStream = keyValueDStream.mapWithState[StateType, MappedType](spec)
 * }}}
 *
 * Example in Java:
 * {{{
 *   // A mapping function that maintains an integer state and return a string
 *   Function3<String, Optional<Integer>, State<Integer>, String> mappingFunction =
 *       new Function3<String, Optional<Integer>, State<Integer>, String>() {
 *           @Override
 *           public Optional<String> call(Optional<Integer> value, State<Integer> state) {
 *               // Use state.exists(), state.get(), state.update() and state.remove()
 *               // to manage state, and return the necessary string
 *           }
 *       };
 *
 *    JavaMapWithStateDStream<String, Integer, Integer, String> mapWithStateDStream =
 *        keyValueDStream.mapWithState(StateSpec.function(mappingFunc));
 * }}}
 *
 * @tparam KeyType    Class of the state key
 * @tparam ValueType  Class of the state value
 * @tparam StateType  Class of the state data
 * @tparam MappedType Class of the mapped elements
 */
@Experimental
sealed abstract class StateSpec[KeyType, ValueType, StateType, MappedType] extends Serializable {

  /**
   * Set the RDD containing the initial states that will be used by `mapWithState`
   */
  def initialState(rdd: RDD[(KeyType, StateType)]): this.type

  /**
   * Set the RDD containing the initial states that will be used by `mapWithState`
   */
  def initialState(javaPairRDD: JavaPairRDD[KeyType, StateType]): this.type

  /**
   * Set the number of partitions by which the state RDDs generated by `mapWithState`
   * will be partitioned. Hash partitioning will be used.
   */
  def numPartitions(numPartitions: Int): this.type

  /**
   * Set the partitioner by which the state RDDs generated by `mapWithState` will be partitioned.
   */
  def partitioner(partitioner: Partitioner): this.type

  /**
   * Set the duration after which the state of an idle key will be removed. A key and its state is
   * considered idle if it has not received any data for at least the given duration. The
   * mapping function will be called one final time on the idle states that are going to be
   * removed; [[org.apache.spark.streaming.State State.isTimingOut()]] set
   * to `true` in that call.
   */
  def timeout(idleDuration: Duration): this.type
}


/**
 * :: Experimental ::
 * Builder object for creating instances of `org.apache.spark.streaming.StateSpec`
 * that is used for specifying the parameters of the DStream transformation `mapWithState`
 * that is used for specifying the parameters of the DStream transformation
 * `mapWithState` operation of a
 * [[org.apache.spark.streaming.dstream.PairDStreamFunctions pair DStream]] (Scala) or a
 * [[org.apache.spark.streaming.api.java.JavaPairDStream JavaPairDStream]] (Java).
 *
 * Example in Scala:
 * {{{
 *    // A mapping function that maintains an integer state and return a String
 *    def mappingFunction(key: String, value: Option[Int], state: State[Int]): Option[String] = {
 *      // Use state.exists(), state.get(), state.update() and state.remove()
 *      // to manage state, and return the necessary string
 *    }
 *
 *    val spec = StateSpec.function(mappingFunction).numPartitions(10)
 *
 *    val mapWithStateDStream = keyValueDStream.mapWithState[StateType, MappedType](spec)
 * }}}
 *
 * Example in Java:
 * {{{
 *   // A mapping function that maintains an integer state and return a string
 *   Function3<String, Optional<Integer>, State<Integer>, String> mappingFunction =
 *       new Function3<String, Optional<Integer>, State<Integer>, String>() {
 *           @Override
 *           public Optional<String> call(Optional<Integer> value, State<Integer> state) {
 *               // Use state.exists(), state.get(), state.update() and state.remove()
 *               // to manage state, and return the necessary string
 *           }
 *       };
 *
 *    JavaMapWithStateDStream<String, Integer, Integer, String> mapWithStateDStream =
 *        keyValueDStream.mapWithState(StateSpec.function(mappingFunc));
 *}}}
 */
@Experimental
object StateSpec {
  /**
   * Create a [[org.apache.spark.streaming.StateSpec StateSpec]] for setting all the specifications
   * of the `mapWithState` operation on a
   * [[org.apache.spark.streaming.dstream.PairDStreamFunctions pair DStream]].
   *
   * @param mappingFunction The function applied on every data item to manage the associated state
   *                         and generate the mapped data
   * @tparam KeyType      Class of the keys
   * @tparam ValueType    Class of the values
   * @tparam StateType    Class of the states data
   * @tparam MappedType   Class of the mapped data
   */
  def function[KeyType, ValueType, StateType, MappedType](
      mappingFunction: (Time, KeyType, Option[ValueType], State[StateType]) => Option[MappedType]
    ): StateSpec[KeyType, ValueType, StateType, MappedType] = {
    ClosureCleaner.clean(mappingFunction, checkSerializable = true)
    new StateSpecImpl(mappingFunction)
  }

  /**
   * Create a [[org.apache.spark.streaming.StateSpec StateSpec]] for setting all the specifications
   * of the `mapWithState` operation on a
   * [[org.apache.spark.streaming.dstream.PairDStreamFunctions pair DStream]].
   *
   * @param mappingFunction The function applied on every data item to manage the associated state
   *                         and generate the mapped data
   * @tparam ValueType    Class of the values
   * @tparam StateType    Class of the states data
   * @tparam MappedType   Class of the mapped data
   */
  def function[KeyType, ValueType, StateType, MappedType](
      mappingFunction: (KeyType, Option[ValueType], State[StateType]) => MappedType
    ): StateSpec[KeyType, ValueType, StateType, MappedType] = {
    ClosureCleaner.clean(mappingFunction, checkSerializable = true)
    val wrappedFunction =
      (time: Time, key: KeyType, value: Option[ValueType], state: State[StateType]) => {
        Some(mappingFunction(key, value, state))
      }
    new StateSpecImpl(wrappedFunction)
  }

  /**
   * Create a [[org.apache.spark.streaming.StateSpec StateSpec]] for setting all
   * the specifications of the `mapWithState` operation on a
   * [[org.apache.spark.streaming.api.java.JavaPairDStream JavaPairDStream]].
   *
   * @param mappingFunction The function applied on every data item to manage the associated
   *                        state and generate the mapped data
   * @tparam KeyType      Class of the keys
   * @tparam ValueType    Class of the values
   * @tparam StateType    Class of the states data
   * @tparam MappedType   Class of the mapped data
   */
  def function[KeyType, ValueType, StateType, MappedType](mappingFunction:
      JFunction4[Time, KeyType, Optional[ValueType], State[StateType], Optional[MappedType]]):
    StateSpec[KeyType, ValueType, StateType, MappedType] = {
    val wrappedFunc = (time: Time, k: KeyType, v: Option[ValueType], s: State[StateType]) => {
      val t = mappingFunction.call(time, k, JavaUtils.optionToOptional(v), s)
      if (t.isPresent) {
        Some(t.get)
      } else {
        None
      }
    }
    StateSpec.function(wrappedFunc)
  }

  /**
   * Create a [[org.apache.spark.streaming.StateSpec StateSpec]] for setting all the specifications
   * of the `mapWithState` operation on a
   * [[org.apache.spark.streaming.api.java.JavaPairDStream JavaPairDStream]].
   *
   * @param mappingFunction The function applied on every data item to manage the associated
   *                        state and generate the mapped data
   * @tparam ValueType    Class of the values
   * @tparam StateType    Class of the states data
   * @tparam MappedType   Class of the mapped data
   */
  def function[KeyType, ValueType, StateType, MappedType](
      mappingFunction: JFunction3[KeyType, Optional[ValueType], State[StateType], MappedType]):
    StateSpec[KeyType, ValueType, StateType, MappedType] = {
    val wrappedFunc = (k: KeyType, v: Option[ValueType], s: State[StateType]) => {
      mappingFunction.call(k, JavaUtils.optionToOptional(v), s)
    }
    StateSpec.function(wrappedFunc)
  }
}


/** Internal implementation of [[org.apache.spark.streaming.StateSpec]] interface. */
private[streaming]
case class StateSpecImpl[K, V, S, T](
    function: (Time, K, Option[V], State[S]) => Option[T]) extends StateSpec[K, V, S, T] {

  require(function != null)

  @volatile private var partitioner: Partitioner = null
  @volatile private var initialStateRDD: RDD[(K, S)] = null
  @volatile private var timeoutInterval: Duration = null

  override def initialState(rdd: RDD[(K, S)]): this.type = {
    this.initialStateRDD = rdd
    this
  }

  override def initialState(javaPairRDD: JavaPairRDD[K, S]): this.type = {
    this.initialStateRDD = javaPairRDD.rdd
    this
  }

  override def numPartitions(numPartitions: Int): this.type = {
    this.partitioner(new HashPartitioner(numPartitions))
    this
  }

  override def partitioner(partitioner: Partitioner): this.type = {
    this.partitioner = partitioner
    this
  }

  override def timeout(interval: Duration): this.type = {
    this.timeoutInterval = interval
    this
  }

  // ================= Private Methods =================

  private[streaming] def getFunction(): (Time, K, Option[V], State[S]) => Option[T] = function

  private[streaming] def getInitialStateRDD(): Option[RDD[(K, S)]] = Option(initialStateRDD)

  private[streaming] def getPartitioner(): Option[Partitioner] = Option(partitioner)

  private[streaming] def getTimeoutInterval(): Option[Duration] = Option(timeoutInterval)
}

相关信息

spark 源码目录

相关文章

spark Checkpoint 源码

spark ContextWaiter 源码

spark DStreamGraph 源码

spark Duration 源码

spark Interval 源码

spark State 源码

spark StreamingConf 源码

spark StreamingContext 源码

spark StreamingSource 源码

spark Time 源码

0  赞